Przejdź do treści

Dr hab. inż. Grzegorz Kudra

Data dodania
Kategorie

 Profesor PŁ

dr hab. inż. Grzegorz Kudra

Grzegorz Kudra urodził się w roku 1974. Otrzymał tytuły/stopnie naukowe magistra, doktora i doktora habilitowanego odpowiednio w 1999, 2002 i 2013 roku w dyscyplinie mechanika. Od roku 1999 jest zatrudniony w Katedrze Automatyki, Biomechaniki i Mechatroniki (1999-2002 jako asystent, 2003-2018 – adiunkt i od 2018 na stanowisku profesora nadzwyczajnego).

 

Bibliometric data:

SCOPUS ID  |  WoS  |  GOOGLE SCHOLAR  | ORCID

Main areas of interests:

nonlinear dynamics; modelling and analysis of mechanical systems with impacts and friction; identification and control

Supervisor of PhD students:

1.    Krzysztof Witkowski: Mathematical modelling, simulation and experimental investigations of mechanical systems with impacts, using linear rolling bearings and magnetic springs – finished in 2021
2.    Mohammad Parsa Rezaei: Dynamics and applications of beams coated by piezoelectric layers with shear thickening fluid supports, since 2021
3.    Ali Fasihi: Dynamics of rotating pipe conveying fluid, since 2021
4.    Muhammad Junaid U Rehman: Mathematical analysis of nonlinear differential equations appearing in mechanical models exhibiting parametric and self-excited vibrations, since 2023

Publications in journals indexed in JCR:


[1]    Awrejcewicz, J., Kudra, G., Lamarque, C.-H.: Dynamics investigation of three coupled rods with a horizontal barrier. Meccanica, 38(6), 2003, 687-698 (IF=0.237)
[2]    Awrejcewicz, J., Kudra, G., Lamarque, C.-H.: Investigation of triple pendulum with impacts using fundamental solution matrices, International Journal of Bifurcation and Chaos, 14(12), 2004, 4191-4213 (IF=1.019)
[3]    Awrejcewicz, J., Kudra, G.: Modeling, numerical analysis and application of triple physical pendulum with rigid limiters of motion, Archive of Applied Mechanics,  74(11-12), 2005, 746-753 (IF=0.500)
[4]    Awrejcewicz, J., Kudra, G.: Stability analysis and Lyapunov exponents of a multi-body mechanical system with rigid unilateral constraints. Nonlinear Analysis – Theory, Methods and Applications, 63(5-7), 2005, e909-e918 (IF=0.519)
[5]    Awrejcewicz, J., Kudra, G.: The piston-connecting rod-crankshaft system as a triple physical pendulum with impacts. International Journal of Bifurcation and Chaos, 15(7), 2005, 2207-2226  (IF=0.845)
[6]    Awrejcewicz, J., Kudra, G., Wasilewski, G.: Experimental and numerical investigation of chaotic regions in the triple physical pendulum. Nonlinear Dynamics50(4), 2007, 755-766  (IF=1.045)
[7]    Awrejcewicz, J., Supeł, B., Lamarque, C.-H., Kudra, G., Wasilewski, G., Olejnik, P.: Numerical and experimental study of regular and chaotic motion of triple physical pendulum. International Journal of Bifurcation and Chaos18(10), 2008, 2883-2915 (IF=0.870)
[8]    Kudra, G., Awrejcewicz, J.: Tangens hyperbolicus approximations of the spatial model of friction coupled with rolling resistance. International Journal of Bifurcation and Chaos21(10), 2011, 2905-2917 (IF=0.755)
[9]    Awrejcewicz, J., Kudra, G.: Celtic stone dynamics revisited using dry friction and rolling resistance. Shock and Vibration, 19, 2012, 1-9  (IF=0.535)
[10]    Awrejcewicz, J., Wasilewski, G., Kudra, G., Reshmin, S.A.: An experiment with swinging up a double pendulum using feedback control. Journal of Computer and Systems Sciences International51(2), 2012, 176-182 (IF=0.249)
[11]    Kudra, G., Awrejcewicz, J.: Approximate modelling of resulting dry friction forces and rolling resistance for elliptic contact shape. European Journal of Mechanics A/Solids,  42, 2013, 358-375 (IF=1.904)
[12]    Nigmatullin, R. R., Osokin, S. I., Awrejcewicz, J., Kudra, G.: Application of the generalized Prony spectrum for extraction of information hidden in chaotic trajectories of triple pendulum. Central European Journal of Physics12(8), 2014, 565-577  (IF=1.085)
[13]    Nigmatullin, R. R., Osokin, S. I., Awrejcewicz, J., Wasilewski, G., Kudra, G.: The fluctuation spectroscopy based on the scaling properties of beta-distribution: Analysis of triple pendulum data. Mechanical Systems and Signal Processing,  52-53, 2015, 278-292  (IF=2.771)
[14]    Kudra, G., Awrejcewicz, J.: Application and experimental validation of new computational models of friction forces and rolling resistance. Acta Mechanica226, 2015, 2831-2848  (IF=1.694)
[15]    Kaźmierczak, M., Kudra, G., Awrejcewicz, J., Wasilewski, G.: Mathematical modelling, numerical simulations and experimental verification of bifurcation dynamics of a pendulum driven by a dc motor. European Journal of Physics36, 2015, 13 pages (IF=0.608)
[16]    Kudra, G., Awrejcewicz, J.: A smooth model of the resultant friction force on a plane contact area. Journal of Theoretical and Applied Mechanics,  54(3), 2016, 909-919  (IF=0.683)
[17]    Kudra, G., Szewc, M., Wojtunik, I., Awrejcewicz, J.: Shaping the trajectory of the billiard ball with approximations of the resultant contact forces. Mechatronics,  37, 2016, 54-62   (IF=2.496)
[18]    Kudra, G., Szewc, M., Wojtunik, I., Awrejcewicz, J.: On some approximations of the resultant contact forces and their application in rigid body dynamics. Mechanical Systems and Signal Processing79, 2016, 182-191 (IF=4.116)
[19]    Kudra, G., Awrejcewicz, J.: Application of a special class of smooth models of the resultant friction force and moment occurring on a circular contact area. Archive of Applied Mechanics87(5), 2017, 817-828 (IF=1.467)
[20]    Kudra, G., Awrejcewicz, J., Szewc, M.: Modeling and simulation of the clutch dynamics using approximations of the resulting contact forces. Applied Mathematical Modelling46, 2017, 707-715 (IF=2.617)


2019

[21]    Skurativskyi, S., Kudra, G. ,Witkowski, G., Awrejcewicz, J.: Bifurcation phenomena and statistical regularities in dynamics of forced impacting oscillator. Nonlinear Dynamics, 98, 2019, 1795-1806 (IF=4.867, P=140)
[22]    Kudra, G., Szewc, M., Ludwicki, M., Awrejcewicz,. J.: Modelling and simulation of bifurcation dynamics of a double spatial pendulum excited by a rotating obstacle. International Journal of Structural Stability and Dynamics2019, 19(12), 1950145 (IF=2.015, P=100)
[23]    Skurativskyi, S., Kudra, G. ,Wasilewski, G., Awrejcewicz, J.: Properties of impact events in the model of forced impacting oscillator: experimental and numerical investigations. International Journal of Non-Linear Mechanics, 113, 2019, 55-61 (IF=2.313, P=100)
[24]    Witkowski, K., Kudra, G., Wasilewski, G., Awrejcewicz, J.: Modelling and experimental validation of one-degree-of-freedom impacting oscillator. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 233(4), 2019, 418-430 (IF =1.101, P=40)
[25]    Awrejcewicz, J., Kudra, G.: Rolling resistance modelling in the Celtic stone dynamics. Multibody System Dynamics, 45 , 2019, 155-167 (IF=2.071, P=140)

2020

[26]    Awrejcewicz, J., Zafar, A.A., Kudra, G., Riaz, M.B.: Theoretical study of the blood flow in arteries in the presence of magnetic particles and under periodic body acceleration. Chaos, Solitons & Fractals, 140, 2020, 110204 (IF=5.944, P=70)
[27]    Zafar, A.A., Kudra, G., Awrejcewicz, J., Abdeljawad, T., Riaz, M.B.: A comparative study of the fractional oscillators. Alexandria Engineering Journal,  59(4), 2020, 2649-2676 (IF=3.732, P=70)
[28]    Zafar, A.A., Kudra, G., Awrejcewicz, J.: An investigation of Fractional Bagley Torvik equation. Entropy, 22(28), 2020, 28  (IF=2.524, P=100)
[29]    Litak, G.,  Syta, A., Wasilewski, G. , Kudra,  G., Awrejcewicz, J.: Dynamical response of a pendulum driven horizontally by a DC motor with a slider-crank mechanism. Nonlinear Dynamics, 99, 2020, 1923-1935 (IF=5.022, P=140)

2021

[30]    Awrejcewicz, J., Kudra, G., Mazur, O.: Parametric vibrations of graphene sheets based on the double mode model and the nonlocal elasticity theory. Nonlinear Dynamics, 105, 2021, 2173-2193 (IF=5.741, P=140)
[31]    Zafar, A.A., Awrejcewicz, J., Kudra, G., Shah, N.A. , Yook, S.-J.: Magneto-free-convection flow of a rate type fluid over an inclined plate with heat and mass flux. Case Studies in Thermal Engineering,  27, 2021, 101249 (IF=6.268, P=70)
[32]    Awrejcewicz, J., Kudra, G., Mazur, O.: Double mode model of size-dependent chaotic vibrations of nanoplates based on the nonlocal elasticity theory. Nonlinear Dynamics, 104, 2021, 3425-3444 (IF=5.741, P=140)
[33]    Witkowski, K., Kudra, G., Skurativskyi, S., Wasilewski, G., Awrejcewicz, J.: Modeling and dynamics analysis of a forced two-degree-of-freedom mechanical oscillator with magnetic springs. Mechanical Systems and Signal Processing, 148, 2021, 107138 (IF=8.934, P=200)

2022

[34]    Witkowski, K., Kudra, G., Awrejcewicz, J.:  A new discontinuous impact model with finite collision duration. Mechanical Systems and Signal Processing, 166, 2022, 108417 (IF=8.934, P=200)
[35]    Kudra, G., Balthazar, J.M., Tusset, A.M., Wasilewski, G., Stańczyk, B., Awrejcewicz, J.: Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism. Mechanical Systems and Signal Processing,  166, 2022, 108415 (IF=8.934, P=200)
[36]    Seth, S., Kudra, G., Witkowski, K., Awrejcewicz, J.: Equivalent electronic circuit of a system of oscillators connected with periodically variable stiffness. Applied Sciences2022, 12(4), 2024 (IF=2.838, P=100)
[37]    Witkowski, K., Kudra, G., Wasilewski, G., Awrejcewicz, J.: Mathematical modelling, numerical and experimental analysis of one-degree-of-freedom oscillator with Duffing-type stiffness. International Journal of Non-Linear Mechanics, 138,103859  (IF=3.336, P=100)

2023

[38]    Shakeel, M., AlQahtani, S.A., Junaid-U-Rehman, M., Kudra, G., Awrejcewicz, J., Alawwad, A.M., Alotaibi, A.A., Safran, M.: Construction of diverse water wave structures for coupled nonlinear fractional Drinfel’d-Sokolov-Wilson model with Beta derivative and its modulus instability. Scientific Reports, 13, 2023, 17528  (IF=4.6, P=140)
[39]    Awrejcewicz, J., Kudra, G., Mazur, O.: Chaotic vibration of double-layer graphene sheet system. International Journal of Non-Linear Mechanics, 156, 2023, 104538  (IF=3.2, P=100)
[40]    Rezaei, M.P., Kudra, G., Awrejcewicz, J.: Innovative nonlinear vibration control of beam structures using shear thickening fluid dampers. International Journal of Non-Linear Mechanics, 156, 2023, 104503 (IF=3.2, P=100)
[41]    Njitacke, Z.T., Awrejcewicz, J., Tsafack, Kudra, G., Kengne, J.: Complex Dynamics, released energy, and multistability in a single-layered graphene sheet under periodic loads. Physica Scripta, 98, 2023, 085228 (IF=2.9, P=40)
[42]    Junaid-U-Rehman, M., Awrejcewicz, J., Kudra, G.: Conservation laws, solitary wave solutions, and Lie analysis for the nonlinear chain of atoms. Scientific Reports,  13, 2023, 11537 (IF=4.6, P=140)
[43]    Fasihi, A., Shahgholi, M., Kudra, G., Awrejcewicz, J.: Static and dynamic bifurcations analysis of a fluid-conveying pipe with axially moving supports surrounded by an external fluid. International Journal of Structural Stability and Dynamics 23(5), 2023, 2350054 (IF=3.6, P=100)
[44]    Kudra, G., Witkowski, K., Fasihi, A.,  Wasilewski, G.,  Seth, S., Polczyński, K., Awrejcewicz, J.: Bifurcation dynamics of 1DOF parametric oscillator with stiffness-hardening characteristic and dry friction. Journal of Sound and Vibration, 543, 2023, 117356 (IF=4.7, P=200)

2024

[45]    Sani, G., Balaram, B., Kudra, G., Awrejcewicz, J.: Energy harvesting from friction-induced vibrations in vehicle braking systems in the presence of rotary unbalances. Energy,  289, 2024, 130007 (IF=9.0, P=200)
[46]    Seth. S., Kudra, G., Awrejcewicz, J.: Study of bifurcation of a 2DoF mechanical impacting systems. Nonlinear Dynamics,  (IF=5.6, P=140) - accepted
[47]    Kudra, G., Witkowski, K., Rezaei, M.P. , Awrejcewicz, J.: Mathematical modelling and experimental validation of bifurcation dynamics of one-degree-of-freedom oscillator with Duffing-type stiffness and rigid obstacle. Journal of Vibration Engineering and Technologies, (IF=2.7, P=40)
[48]    Junaid-U-Rehman, M., Almusawa H., Awrejcewicz, J., Kudra, G., Abbas, N., Rasool, A.: Propagation of electrostatic potential with dynamical behaviors and conservation laws of the (3+1)-dimensional extended quantum Zakharov-Kuznetsov equation. International Journal of Geometric Methods in Modern Physics  (IF=1.8, P=40)