Skip to main content

Grzegorz Kudra, DSc, PhD, MSc

Authored on
Kategorie

 Professor at the Lodz University of Technology

dr hab. inż. Grzegorz Kudra

Grzegorz Kudra was born in 1974 in Lodz. He received M.Sc., Ph.D. and D.Sc. degrees in Applied Mechanics from Lodz University of Technology in 1999, 2002 and 2013, respectively. Since 1999 he is employed in Department of Automation, Biomechanics and Mechatronics (1999-2002 as assistant, 2003-2018 as assistant  professor, since 2018 as associate professor).

 

Bibliometric data:

SCOPUS ID  |  WoS  |  GOOGLE SCHOLAR  | ORCID

Main areas of interests:

nonlinear dynamics; modelling and analysis of mechanical systems with impacts and friction; identification and control

Supervisor of PhD students:

1.    Krzysztof Witkowski: Mathematical modelling, simulation and experimental investigations of mechanical systems with impacts, using linear rolling bearings and magnetic springs – finished in 2021
2.    Mohammad Parsa Rezaei: Dynamics and applications of beams coated by piezoelectric layers with shear thickening fluid supports, since 2021
3.    Ali Fasihi: Dynamics of rotating pipe conveying fluid, since 2021
4.    Muhammad Junaid U Rehman: Mathematical analysis of nonlinear differential equations appearing in mechanical models exhibiting parametric and self-excited vibrations, since 2023

Publications in journals indexed in JCR:

[1]    Awrejcewicz, J., Kudra, G., Lamarque, C.-H.: Dynamics investigation of three coupled rods with a horizontal barrier. Meccanica, 38(6), 2003, 687-698 (IF=0.237)
[2]    Awrejcewicz, J., Kudra, G., Lamarque, C.-H.: Investigation of triple pendulum with impacts using fundamental solution matrices, International Journal of Bifurcation and Chaos, 14(12), 2004, 4191-4213 (IF=1.019)
[3]    Awrejcewicz, J., Kudra, G.: Modeling, numerical analysis and application of triple physical pendulum with rigid limiters of motion, Archive of Applied Mechanics,  74(11-12), 2005, 746-753 (IF=0.500)
[4]    Awrejcewicz, J., Kudra, G.: Stability analysis and Lyapunov exponents of a multi-body mechanical system with rigid unilateral constraints. Nonlinear Analysis – Theory, Methods and Applications, 63(5-7), 2005, e909-e918 (IF=0.519)
[5]    Awrejcewicz, J., Kudra, G.: The piston-connecting rod-crankshaft system as a triple physical pendulum with impacts. International Journal of Bifurcation and Chaos, 15(7), 2005, 2207-2226  (IF=0.845)
[6]    Awrejcewicz, J., Kudra, G., Wasilewski, G.: Experimental and numerical investigation of chaotic regions in the triple physical pendulum. Nonlinear Dynamics50(4), 2007, 755-766  (IF=1.045)
[7]    Awrejcewicz, J., Supeł, B., Lamarque, C.-H., Kudra, G., Wasilewski, G., Olejnik, P.: Numerical and experimental study of regular and chaotic motion of triple physical pendulum. International Journal of Bifurcation and Chaos18(10), 2008, 2883-2915 (IF=0.870)
[8]    Kudra, G., Awrejcewicz, J.: Tangens hyperbolicus approximations of the spatial model of friction coupled with rolling resistance. International Journal of Bifurcation and Chaos21(10), 2011, 2905-2917 (IF=0.755)
[9]    Awrejcewicz, J., Kudra, G.: Celtic stone dynamics revisited using dry friction and rolling resistance. Shock and Vibration, 19, 2012, 1-9  (IF=0.535)
[10]    Awrejcewicz, J., Wasilewski, G., Kudra, G., Reshmin, S.A.: An experiment with swinging up a double pendulum using feedback control. Journal of Computer and Systems Sciences International51(2), 2012, 176-182 (IF=0.249)
[11]    Kudra, G., Awrejcewicz, J.: Approximate modelling of resulting dry friction forces and rolling resistance for elliptic contact shape. European Journal of Mechanics A/Solids,  42, 2013, 358-375 (IF=1.904)
[12]    Nigmatullin, R. R., Osokin, S. I., Awrejcewicz, J., Kudra, G.: Application of the generalized Prony spectrum for extraction of information hidden in chaotic trajectories of triple pendulum. Central European Journal of Physics12(8), 2014, 565-577  (IF=1.085)
[13]    Nigmatullin, R. R., Osokin, S. I., Awrejcewicz, J., Wasilewski, G., Kudra, G.: The fluctuation spectroscopy based on the scaling properties of beta-distribution: Analysis of triple pendulum data. Mechanical Systems and Signal Processing,  52-53, 2015, 278-292  (IF=2.771)
[14]    Kudra, G., Awrejcewicz, J.: Application and experimental validation of new computational models of friction forces and rolling resistance. Acta Mechanica226, 2015, 2831-2848  (IF=1.694)
[15]    Kaźmierczak, M., Kudra, G., Awrejcewicz, J., Wasilewski, G.: Mathematical modelling, numerical simulations and experimental verification of bifurcation dynamics of a pendulum driven by a dc motor. European Journal of Physics36, 2015, 13 pages (IF=0.608)
[16]    Kudra, G., Awrejcewicz, J.: A smooth model of the resultant friction force on a plane contact area. Journal of Theoretical and Applied Mechanics,  54(3), 2016, 909-919  (IF=0.683)
[17]    Kudra, G., Szewc, M., Wojtunik, I., Awrejcewicz, J.: Shaping the trajectory of the billiard ball with approximations of the resultant contact forces. Mechatronics,  37, 2016, 54-62   (IF=2.496)
[18]    Kudra, G., Szewc, M., Wojtunik, I., Awrejcewicz, J.: On some approximations of the resultant contact forces and their application in rigid body dynamics. Mechanical Systems and Signal Processing79, 2016, 182-191 (IF=4.116)
[19]    Kudra, G., Awrejcewicz, J.: Application of a special class of smooth models of the resultant friction force and moment occurring on a circular contact area. Archive of Applied Mechanics87(5), 2017, 817-828 (IF=1.467)
[20]    Kudra, G., Awrejcewicz, J., Szewc, M.: Modeling and simulation of the clutch dynamics using approximations of the resulting contact forces. Applied Mathematical Modelling46, 2017, 707-715 (IF=2.617)

2019

[21]    Skurativskyi, S., Kudra, G. ,Witkowski, G., Awrejcewicz, J.: Bifurcation phenomena and statistical regularities in dynamics of forced impacting oscillator. Nonlinear Dynamics, 98, 2019, 1795-1806 (IF=4.867, P=140)
[22]    Kudra, G., Szewc, M., Ludwicki, M., Awrejcewicz,. J.: Modelling and simulation of bifurcation dynamics of a double spatial pendulum excited by a rotating obstacle. International Journal of Structural Stability and Dynamics2019, 19(12), 1950145 (IF=2.015, P=100)
[23]    Skurativskyi, S., Kudra, G. ,Wasilewski, G., Awrejcewicz, J.: Properties of impact events in the model of forced impacting oscillator: experimental and numerical investigations. International Journal of Non-Linear Mechanics, 113, 2019, 55-61 (IF=2.313, P=100)
[24]    Witkowski, K., Kudra, G., Wasilewski, G., Awrejcewicz, J.: Modelling and experimental validation of one-degree-of-freedom impacting oscillator. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 233(4), 2019, 418-430 (IF =1.101, P=40)
[25]    Awrejcewicz, J., Kudra, G.: Rolling resistance modelling in the Celtic stone dynamics. Multibody System Dynamics, 45 , 2019, 155-167 (IF=2.071, P=140)

2020

[26]    Awrejcewicz, J., Zafar, A.A., Kudra, G., Riaz, M.B.: Theoretical study of the blood flow in arteries in the presence of magnetic particles and under periodic body acceleration. Chaos, Solitons & Fractals, 140, 2020, 110204 (IF=5.944, P=70)
[27]    Zafar, A.A., Kudra, G., Awrejcewicz, J., Abdeljawad, T., Riaz, M.B.: A comparative study of the fractional oscillators. Alexandria Engineering Journal,  59(4), 2020, 2649-2676 (IF=3.732, P=70)
[28]    Zafar, A.A., Kudra, G., Awrejcewicz, J.: An investigation of Fractional Bagley Torvik equation. Entropy, 22(28), 2020, 28  (IF=2.524, P=100)
[29]    Litak, G.,  Syta, A., Wasilewski, G. , Kudra,  G., Awrejcewicz, J.: Dynamical response of a pendulum driven horizontally by a DC motor with a slider-crank mechanism. Nonlinear Dynamics, 99, 2020, 1923-1935 (IF=5.022, P=140)

2021

[30]    Awrejcewicz, J., Kudra, G., Mazur, O.: Parametric vibrations of graphene sheets based on the double mode model and the nonlocal elasticity theory. Nonlinear Dynamics, 105, 2021, 2173-2193 (IF=5.741, P=140)
[31]    Zafar, A.A., Awrejcewicz, J., Kudra, G., Shah, N.A. , Yook, S.-J.: Magneto-free-convection flow of a rate type fluid over an inclined plate with heat and mass flux. Case Studies in Thermal Engineering,  27, 2021, 101249 (IF=6.268, P=70)
[32]    Awrejcewicz, J., Kudra, G., Mazur, O.: Double mode model of size-dependent chaotic vibrations of nanoplates based on the nonlocal elasticity theory. Nonlinear Dynamics, 104, 2021, 3425-3444 (IF=5.741, P=140)
[33]    Witkowski, K., Kudra, G., Skurativskyi, S., Wasilewski, G., Awrejcewicz, J.: Modeling and dynamics analysis of a forced two-degree-of-freedom mechanical oscillator with magnetic springs. Mechanical Systems and Signal Processing, 148, 2021, 107138 (IF=8.934, P=200)

2022

[34]    Witkowski, K., Kudra, G., Awrejcewicz, J.:  A new discontinuous impact model with finite collision duration. Mechanical Systems and Signal Processing, 166, 2022, 108417 (IF=8.934, P=200)
[35]    Kudra, G., Balthazar, J.M., Tusset, A.M., Wasilewski, G., Stańczyk, B., Awrejcewicz, J.: Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism. Mechanical Systems and Signal Processing,  166, 2022, 108415 (IF=8.934, P=200)
[36]    Seth, S., Kudra, G., Witkowski, K., Awrejcewicz, J.: Equivalent electronic circuit of a system of oscillators connected with periodically variable stiffness. Applied Sciences2022, 12(4), 2024 (IF=2.838, P=100)
[37]    Witkowski, K., Kudra, G., Wasilewski, G., Awrejcewicz, J.: Mathematical modelling, numerical and experimental analysis of one-degree-of-freedom oscillator with Duffing-type stiffness. International Journal of Non-Linear Mechanics, 138,103859  (IF=3.336, P=100)

2023

[38]    Shakeel, M., AlQahtani, S.A., Junaid-U-Rehman, M., Kudra, G., Awrejcewicz, J., Alawwad, A.M., Alotaibi, A.A., Safran, M.: Construction of diverse water wave structures for coupled nonlinear fractional Drinfel’d-Sokolov-Wilson model with Beta derivative and its modulus instability. Scientific Reports, 13, 2023, 17528  (IF=4.6, P=140)
[39]    Awrejcewicz, J., Kudra, G., Mazur, O.: Chaotic vibration of double-layer graphene sheet system. International Journal of Non-Linear Mechanics, 156, 2023, 104538  (IF=3.2, P=100)
[40]    Rezaei, M.P., Kudra, G., Awrejcewicz, J.: Innovative nonlinear vibration control of beam structures using shear thickening fluid dampers. International Journal of Non-Linear Mechanics, 156, 2023, 104503 (IF=3.2, P=100)
[41]    Njitacke, Z.T., Awrejcewicz, J., Tsafack, Kudra, G., Kengne, J.: Complex Dynamics, released energy, and multistability in a single-layered graphene sheet under periodic loads. Physica Scripta, 98, 2023, 085228 (IF=2.9, P=40)
[42]    Junaid-U-Rehman, M., Awrejcewicz, J., Kudra, G.: Conservation laws, solitary wave solutions, and Lie analysis for the nonlinear chain of atoms. Scientific Reports,  13, 2023, 11537 (IF=4.6, P=140)
[43]    Fasihi, A., Shahgholi, M., Kudra, G., Awrejcewicz, J.: Static and dynamic bifurcations analysis of a fluid-conveying pipe with axially moving supports surrounded by an external fluid. International Journal of Structural Stability and Dynamics 23(5), 2023, 2350054 (IF=3.6, P=100)
[44]    Kudra, G., Witkowski, K., Fasihi, A.,  Wasilewski, G.,  Seth, S., Polczyński, K., Awrejcewicz, J.: Bifurcation dynamics of 1DOF parametric oscillator with stiffness-hardening characteristic and dry friction. Journal of Sound and Vibration, 543, 2023, 117356 (IF=4.7, P=200)

2024

[45]    Sani, G., Balaram, B., Kudra, G., Awrejcewicz, J.: Energy harvesting from friction-induced vibrations in vehicle braking systems in the presence of rotary unbalances. Energy,  289, 2024, 130007 (IF=9.0, P=200)
[46]    Seth. S., Kudra, G., Awrejcewicz, J.: Study of bifurcation of a 2DoF mechanical impacting systems. Nonlinear Dynamics,  (IF=5.6, P=140) - accepted
[47]    Kudra, G., Witkowski, K., Rezaei, M.P. , Awrejcewicz, J.: Mathematical modelling and experimental validation of bifurcation dynamics of one-degree-of-freedom oscillator with Duffing-type stiffness and rigid obstacle. Journal of Vibration Engineering and Technologies, (IF=2.7, P=40)
[48]    Junaid-U-Rehman, M., Almusawa H., Awrejcewicz, J., Kudra, G., Abbas, N., Rasool, A.: Propagation of electrostatic potential with dynamical behaviors and conservation laws of the (3+1)-dimensional extended quantum Zakharov-Kuznetsov equation. International Journal of Geometric Methods in Modern Physics  (IF=1.8, P=40)