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Two basic aspects of the problem have been known for a

long time
- Fire-hose instability - Garden-hose instability
- Buckling instability - Flutter instability
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THE STUDY OF THE DYNAMICS OF PIPES

Has become well known because:

= On the same level as the classical problems

(a column subjected to compressive loading and the rotating shaft)

= (Capable of displaying a various interesting dynamical behavior

(period-n, quasi-periodic, and chaotic motion)

= Belongs to a broader class of dynamical systems involving momentum transport:

(such as high speed magnetic and paper tapes, band-saw blades, transmission chains and belts)




THE STUDY OF THE DYNAMICS OF PIPES

Travelling chains and elastic cords ( series of experiments by Aitken (1878))

Deriving the correct equations of motion Bsourrieres (1939)
The 1950s and 1960s (out of curiosity)

The applications came afterwards, 20, 30 and 50 years later

(For engineering applications, the phenomena of interest occured at flow velocities beyond the normal engineering range) (Escaping the interesting dynamics by
increasing the cross-sectional flow area)

The advent of new applications (very long, thin-walled, or aspirating pipes)

has resulted in shifting the critical flow and bringing interesting dynamics into the normal
operating range

(making them of direct interest to designers and operators, as well as researchers)




APPLICATIONS
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Coriolis mass-flow meters

Coriolis acceleration of opposing sign, generating a torque which periodically twists the pipe at the right-hand
end in and out of the paper as shown. The twist angle ¢ is linearly related to the mass-flow rate MU, and so is
the phase difference in the vibration of the two legs of the U. Either, generally the latter, provides an accurate

measure of the flow-rate
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A: U-shaped pipe; B: T-shaped leaf spring; C: electromagnetic exciter; D: optical sensors




Hydroelastic ichthyoid propulsion

Inspired based on the similarity between the mode shapes of a
fluttering pipe and a slender fish

still at inferior efficiency to a propeller

but special purposes propellers are undesirable because of

sealing (at great depths) or noise problems
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or; B: ‘trolley-type’ conductor; C: motor-pump unit; D: catamaran;
G: thin brass plate; H: Tygon pipes; I: flow adaptor; J: clips for attachment




Aspirating pipes

Ocean mining, OTEC, LNG production and dredging

- Manganese nodules, diamonds, and methane liquid-crystal deposits

- Cold water for OTEC

- Natural gas (LNG) production at sea

PROCESSING PLANT




Solution mining and carbon sequestration

Storing Potash, or other soluble products in natural reservoirs

As large as 5 million petroleum-barrels air/water-tight

So are ideal for storage of large volumes of liquid or gaseous
hydrocarbons for long durations

A similar application is that of Carbon Capture and Storage
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Stability of deep-water risers

Flex hoses

Well control equipment
Upper buoy

- connecting the sea-floor to an offshore floating or fixed platform or to a ship

- All kinds of fluid-structure interactions are of concern for risers, involving
currents, waves and internal flow

Lower buoy -( ]

Submarine base
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Stratospheric cooling

- ‘Stratospheric shield’” proposed as a
geoengineering concept to reverse global
warming

- Liquified SO2 would be pumped from the
ground to the stratosphere via a ~ 30 km
long cantilevered hose, clamped to the
ground at the bottom




Oil-well drilling

- a long hollow drill-rod conveying ‘mud’ (sludge) downwards

- The mud together with debris flows upwards along the string in the annulus
between the drill-rod and the borehole




Vibration attenuation '5g/m

)S 05
- one or more cantilevered pipes conveying fluid attached to a vibrating n
structure for the purpose of damping its vibration
1.5mm
[\

- When the pipe is disturbed, it vibrates, and this is detected by a
displacement sensor. If the vibration is above a predetermined threshold,

a valve opens, admitting fluid flow into the pipe, such as to give optimum me=25g(m
damping l,
M=P>_05
m
1.5mm
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Micro- and nano-tube applications

- medical diagnosis, sensing and materials processing,
with CNTs used as collimators, species separators,
sensors and probes

- For weighing biomolecules and Coriolis mass-flow
meters
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KINEMATICS
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FORCES

The free-body diagram of an element of the pipe
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longitudinal tension

Shear force

the bending moment

the internal fluid and the pipe interaction force
the internal fluid and the pipe interaction force
hydrostatic forces

additional inertia forces

viscous forces

inertia forces

The free-body diagram of an element of the internal fluid
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EQUATIONS OF MOTION

The equations of the axial and lateral motions
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MAKING DIMENSIONLESS AND DISCRETIZATION

Discretization
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LINEAR ANALYSIS T e
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General Trends:

The frequency analysis reveals consistent patterns as internal flow velocity increases from u = 0.01 to u = 2.5:

« Bifurcation speed reduction: All modes exhibit decreased bifurcation speeds, with the first mode showing the most significant
reduction of 1.39 (from 3.53 to 2.14), while higher modes show smaller reductions of 0.55 and 0.41 for the second and third modes,

« Flutter speed increase:
« The first mode flutter speed increases dramatically from vfl = 7.28 to vfl = 10.99, representing a 51% increase and demonstrating that
internal flow delays flutter onset.

« Mode-dependent sensitivity: Lower modes exhibit greater sensitivity to internal flow variations, with the first mode experiencing
the largest absolute changes in both bifurcation and flutter speeds.

« Stability margin enhancement: The increasing gap between bifurcation and flutter speeds at higher u values
indicates enhanced post-buckling stability regions.

In the next section, these stability thresholds are obtained using the nonlinear model to provide more
accurate predictions of the system’s post-critical behavior.




NONLINEAR STABILITY ANALYSIS

To evaluated the results obtained from frequency analysis, a nonlinear stability analysis was conducted
using the pseudo-arclength continuation method
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General Trends:

The results obtained through continuation analysis provide the foundationfor the subsequent nonlinear
dynamic analysis, where the complex post-criticalbehaviors, including limit cycles, quasi-periodic motions,
and chaotic dynamics, are investigated in detalil

« In general, increasing internal flow energy causes the system to destabilize via divergence at lower
moving speeds, but it delays the dynamic flutter boundary.




NONLINEAR ANALYSIS
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General Trends:

Two fundamental classes of post-critical motion emerge consistently: small-amplitude asymmetric
oscillations around post-buckling equilibrium positions and large-amplitude symmetric oscillations around
the original static equilibrium, with transitions governed by both moving speed and internal flow velocity.
A characteristic progression occurs with increasing moving speed: static buckling — asymmetric limit
cycles — quasi-periodic motion — chaotic behavior — symmetric limit cycles, demonstrating period-
doubling and chaos-to-order transitions typical of nonlinear dynamical systems.

Higher internal flow velocities ($u > 2.5%) fundamentally alter system behavior by suppressing flutter
motion and reducing dynamic complexity. This occurs because internal flow momentum transport
dominates support motion effects, causing the system to behave more like a stationary pipe configuration.
Chaotic motion exhibits sensitive dependence on initial conditions and can manifest in both asymmetric
and symmetric forms.

The existence and extent of chaotic regimes depend on the balance between internal flow energy and
support motion parameters.




Thank you for your attention
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