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Two basic aspects of the problem have been known for a 
long time



Has become well known because:

▪ On the same level as the classical problems
 (a column subjected to compressive loading and the rotating shaft)

▪ Capable of displaying a various interesting dynamical behavior

(period-n, quasi-periodic, and chaotic motion) 

▪ Belongs to a broader class of dynamical systems involving momentum transport:

(such as high speed magnetic and paper tapes, band-saw blades, transmission chains and belts)
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THE STUDY OF THE DYNAMICS OF PIPES



Travelling chains and elastic cords (A series of experiments by Aitken (1878) )

Deriving the correct equations of motion Bourrières (1939) 

The 1950s and 1960s (out of curiosity) 

The applications came afterwards, 20, 30 and 50 years later 

(For engineering applications, the phenomena of interest occured at flow velocities beyond the normal engineering range) (Escaping the interesting dynamics by 
increasing the cross-sectional flow area)

The advent of new applications (very long, thin-walled, or aspirating pipes)

has resulted in shifting the critical flow and bringing interesting dynamics into the normal 
operating range 

(making them of direct interest to designers and operators, as well as researchers)
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THE STUDY OF THE DYNAMICS OF PIPES



APPLICATIONS



A: U-shaped pipe; B: T-shaped leaf spring; C: electromagnetic exciter; D: optical sensors 

Coriolis acceleration of opposing sign, generating a torque which periodically twists the pipe at the right-hand 

end in and out of the paper as shown. The twist angle θ is linearly related to the mass-flow rate MU, and so is 

the phase difference in the vibration of the two legs of the U. Either, generally the latter, provides an accurate 

measure of the flow-rate

Coriolis mass-flow meters 



A: overhead electrical conductor; B: ‘trolley-type’ conductor; C: motor-pump unit; D: catamaran;

E: pump inlet; F: pump outlet; G: thin brass plate; H: Tygon pipes; I: flow adaptor; J: clips for attachment 
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Hydroelastic ichthyoid propulsion 

Inspired based on the similarity between the mode shapes of a 
fluttering pipe and a slender fish

still at inferior efficiency to a propeller 

but special purposes propellers are undesirable because of 

sealing (at great depths) or noise problems 
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Ocean mining, OTEC, LNG production and dredging 

- Manganese nodules, diamonds, and methane liquid-crystal deposits

 
- Cold water for OTEC

- Natural gas (LNG) production at sea

Aspirating pipes
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- Storing Potash, or other soluble products in natural reservoirs
-

- As large as 5 million petroleum-barrels air/water-tight 

- So are ideal for storage of large volumes of liquid or gaseous 
hydrocarbons for long durations 

- A similar application is that of Carbon Capture and Storage 

Solution mining and carbon sequestration 
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- connecting the sea-floor to an offshore floating or fixed platform or to a ship 

- All kinds of fluid-structure interactions are of concern for risers, involving 
currents, waves and internal flow 

Stability of deep-water risers 



Stratospheric cooling
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- ‘Stratospheric shield’ proposed as a  
geoengineering concept to reverse global 
warming 

- Liquified SO2 would be pumped from the 
ground to the stratosphere via a ∼ 30 km 
long cantilevered hose, clamped to the 
ground at the bottom 
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- a long hollow drill-rod conveying ‘mud’ (sludge) downwards 

- The mud together with debris flows upwards along the string in the annulus 
between the drill-rod and the borehole 

Oil-well drilling 



14

- one or more cantilevered pipes conveying fluid attached to a vibrating 
structure for the purpose of damping its vibration 

- When the pipe is disturbed, it vibrates, and this is detected by a 
displacement sensor. If the vibration is above a predetermined threshold, 
a valve opens, admitting fluid flow into the pipe, such as to give optimum 
damping

Vibration attenuation 
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- medical diagnosis, sensing and materials processing, 
with CNTs used as collimators, species separators, 
sensors and probes 

- For weighing biomolecules and Coriolis mass-flow 
meters 

Micro- and nano-tube applications 
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Problem at hand
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KINEMATICS 

The velocity and acceleration of the pipe The velocity and acceleration of the internal fluid 



The free-body diagram of an element of the internal fluidThe free-body diagram of an element of the pipe
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FORCES



The equations of the axial and lateral motions Stretching effect
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EQUATIONS OF MOTION



Making dimensionlessDiscretization 
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MAKING DIMENSIONLESS AND DISCRETIZATION



𝑀 ሷ𝒒 + 𝐶 ሶ𝒒 + 𝐾𝒒 = 0

𝒒 = 𝒑𝑒𝑖𝜔𝜏

−ω2𝑴 + 𝑖ω 𝐂 + 𝐊 𝒑 = 0

1st Frequency  

2nd Frequency 

3rd Frequency 

4th Frequency 

 

Bifurcation Divergence Flutter

1st Frequency 3.532 3.533 7.28

2nd Frequency - - -

3rd Frequency 10.61 10.62 -

4th Frequency - - -

U=0.01
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LINEAR ANALYSIS



Bifurcation Divergence Flutter

1st Frequency 3.487 3.488 7.32

2nd Frequency 7.43 7.55 - 7.58 -

3rd Frequency 10.59 10.6 -

4th Frequency - - -

1st Frequency  

2nd Frequency 

3rd Frequency 

4th Frequency 

 
U=0.5
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Bifurcatio
n

Divergence Flutter 2nd 
Divergence

2nd 
Flutter

1st Frequency 3.1 3.105 7.33 9.13 10.7

2nd 
Frequency

6.84 6.86 - 6.98 - - -

3rd Frequency 10.48 10.49 - - -

4th Frequency - - - - -

U=1.5

1st Frequency  

2nd Frequency 

3rd Frequency 

4th Frequency 
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Bifurcatio
n

Divergence Flutter

1st Frequency 2.14 3.105 10.92

2nd Frequency 6.47 6.48 - 6.84 -

3rd Frequency 10.22 10.23 -

4th Frequency 13.93 13.94 -

U=2.5

1st Frequency  

2nd Frequency 

3rd Frequency 

4th Frequency 
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Bifurcatio
n

Divergence Flutter

1st Frequency 2.14 3.105 10.92

2nd Frequency 6.47 6.48 - 6.84 -

3rd Frequency 10.22 10.23 -

4th Frequency 13.93 13.94 -

U=2.5

1st Frequency  

2nd Frequency 

3rd Frequency 

4th Frequency 
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Bifurcatio
n

Divergence Flutter

1st Frequency 2.14 3.105 10.92

2nd Frequency 6.47 6.48 - 6.84 -

3rd Frequency 10.22 10.23 -

4th Frequency 13.93 13.94 -

U=2.5

1st Frequency  

2nd Frequency 

3rd Frequency 

4th Frequency 
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General Trends:

The frequency analysis reveals consistent patterns as internal flow velocity increases from u = 0.01 to u = 2.5:

• Bifurcation speed reduction: All modes exhibit decreased bifurcation speeds, with the first mode showing the most significant 

reduction of 1.39 (from 3.53 to 2.14), while higher modes show smaller reductions of 0.55 and 0.41 for the second and third modes, 
• Flutter speed increase: 
• The first mode flutter speed increases dramatically from vf1 = 7.28 to vf1 = 10.99, representing a 51% increase and demonstrating that 

internal flow delays flutter onset.

• Mode-dependent sensitivity: Lower modes exhibit greater sensitivity to internal flow variations, with the first mode experiencing 

the largest absolute changes in both bifurcation and flutter speeds.
• Stability margin enhancement: The increasing gap between bifurcation and flutter speeds at higher u values 

indicates enhanced post-buckling stability regions. 

In the next section, these stability thresholds are obtained using the nonlinear model to provide more 
accurate predictions of the system’s post-critical behavior.
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NONLINEAR STABILITY ANALYSIS

To evaluated the results obtained from frequency analysis, a nonlinear stability analysis was conducted 
using the pseudo-arclength continuation method











General Trends:

The results obtained through continuation analysis provide the foundationfor the subsequent nonlinear 
dynamic analysis, where the complex post-criticalbehaviors, including limit cycles, quasi-periodic motions, 
and chaotic dynamics, are investigated in detail

• In general, increasing internal flow energy causes the system to destabilize via divergence at lower 
moving speeds, but it delays the dynamic flutter boundary. 



Divergence Asymmetric
Flutter

Symmetric
Flutter

2nd Asymmetric
Flutter

Symmetric
Flutter

V 3.5 6 6.15 8.65 10.1
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U=0.01

NONLINEAR ANALYSIS
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Dimensionless moving speed 𝑣

(a) 𝑣 = 5 (b) 𝑣 = 6.01, (c) 𝑣 = 6.1, (d) 𝑣
= 6.25, (e) 𝑣 = 6.5, and (f) 𝑣 = 8

(g) 𝑣 = 8.4, (h) 𝑣 = 8.65, (i) 𝑣 = 9.5, (j) 𝑣 = 9.7 

𝑎 𝑣 = 6.25 and (b) 𝑣 = 8.4 



Divergence Asymmetric
Flutter

Symmetric
Flutter

2nd Asymmetric
Flutter

Symmetric
Flutter

V 3.5 6 6.15 8.65 10.1
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U=0.01
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Dimensionless moving speed 𝑣

(a) 𝑣 = 6.1, (b) 𝑣 = 6.25, (c) 𝑣 = 6.5, (d) 𝑣 = 8, (e) 

𝑣 = 8.4, and (f) 𝑣 = 9.5 



Divergence Asymmetric
Flutter

Symmetric
Flutter

2nd Asymmetric
Flutter

Symmetric
Flutter

V 3.45 6.25 6.48 8.5 10.8
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U=0.5
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Dimensionless moving speed 𝑣

(a) 𝑣 = 6.25 and (b) 𝑣 = 6.3, (c) 𝑣 = 6.4, 

(d) 𝑣 = 6.48, (e) 𝑣 = 8, (f) 𝑣 = 8.5 

(a) 𝑣 = 6.4 and (b) 𝑣 = 8
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Dimensionless moving speed 𝑣

U=1.5

Divergence Asymmetric
Flutter

Symmetric
Flutter

2nd Asymmetric
Flutter

Symmetric
Flutter

V 3.17 7.1 7.3 8.1 10.2

(a) 𝑣 = 7.1, (b) 𝑣 = 7.15, (c) 𝑣 = 7.7, 

(d) 𝑣 = 8.1, (e) 𝑣 = 8.2, and (f) 𝑣 = 10
(a) 𝑣 = 7.1, (b) 𝑣 = 7.15, (c) 𝑣 = 7.7, 

(d) 𝑣 = 8.1, (e) 𝑣 = 8.2, and (f) 𝑣 = 10
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Dimensionless moving speed 𝑣

U=2.5
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Dimensionless moving speed 𝑣

Dimensionless moving speed 𝑣

(a) 𝑢 = 2.5 

(b) 𝑢 = 3.5 

(c) 𝑢 = 4 

(d) 𝑢 = 6 

(a)

(b)

(c)

(d)



• Two fundamental classes of post-critical motion emerge consistently: small-amplitude asymmetric 
oscillations around post-buckling equilibrium positions and large-amplitude symmetric oscillations around 
the original static equilibrium, with transitions governed by both moving speed and internal flow velocity.        

• A characteristic progression occurs with increasing moving speed: static buckling → asymmetric limit 
cycles → quasi-periodic motion → chaotic behavior → symmetric limit cycles, demonstrating period-
doubling and chaos-to-order transitions typical of nonlinear dynamical systems.       

• Higher internal flow velocities ($u > 2.5$) fundamentally alter system behavior by suppressing flutter 
motion and reducing dynamic complexity. This occurs because internal flow momentum transport 
dominates support motion effects, causing the system to behave more like a stationary pipe configuration.    

• Chaotic motion exhibits sensitive dependence on initial conditions and can manifest in both asymmetric 
and symmetric forms. 

• The existence and extent of chaotic regimes depend on the balance between internal flow energy and 
support motion parameters.

General Trends:



Thank you for your attention
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