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Pendulum-Based System Representation
• Horizontal multi-pendulums: thin rods are rotationally connected.
• System positions: generalized coordinates (ϕi ) of the rods
• The continuous beam is discretized:

1 The whole beam is divided into n equal segments;
2 A joint with rotational spring and damper is placed in the middle of each one.
3 The result: n+1 pendulums, numbered from 0 to n.
4 The lengths of each: le , except for the 0th and n-th pendulums le/2.

• General boundary conditions: by attaching three springs: kx , ky , and kϕ.
• An additional longitudinal spring (kst) connected in series.

Figure 1: Nonlinear Henckey Model: Pendulum-Based System Representation.
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Lagrange’s equations of the second kind

d

dt

(
∂T

∂ϕ̇i

)
− ∂T

∂ϕi
+
∂V

∂ϕi
+
∂R

∂ϕ̇i
= Qi , i = 1...n (1)

Figure 2: System of n pendulums representing the beam’s segments.
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System Energies ( d
dt

(
∂T
∂ϕ̇i

)
− ∂T

∂ϕi
+ ∂V

∂ϕi
+ ∂R

∂ϕ̇i
= Qi)

• Kinetic energy T of the system:

T =
1

2

n∑
i=1

[
mi

(
u̇2Ci

+ ẇ2
Ci

)
+ Bi ϕ̇

2
i

]
(2)

• Potential energy V due to rotational springs and external stiffness:

V =
1

2

n∑
i=1

ki (ϕi − ϕi−1)
2 +

1

2
kTotalx u2end +

1

2
kyw

2
end +

1

2
kϕϕ

2
n (3)

• The Rayleigh function R for internal damping:

R =
1

2

n∑
i=1

di (ϕ̇i − ϕ̇i−1)
2 (4)

7 / 41



M Parsa Rezaei

Introduction

Pendulum-Based
System Representation

Nonlinear
Henckey’s
Model

Governing Equations

Matrix Formulation

Building Matrices

Euler-Bernoulli
via Galerkin
Method

Euler-Bernoulli Problem
Overview

Beam Boundary
Conditions and PDEs

Solving PDEs via
Galerkin method

Results

Conclusion

References

(T = 1
2

∑n
i=1

[
mi

(
u̇2
Ci
+ ẇ 2

Ci

)
+ Bi ϕ̇

2
i

]
,V = 1

2

∑n
i=1 ki (ϕi − ϕi−1)

2 + 1
2
kTotal
x u2

end +
1
2
kyw

2
end +

1
2
kϕϕ

2
n)

• Nondimensional masses and mass moments of inertia:

mi =
li
len

, Bi =
mi (li )

2

12
. (5)

• The rotational stiffness of springs at each joint is:

ki = n, ϕ0 = 0.

• kx is connected in series with kst :

kst =
12l2

tb2
, kTotalx =

kxkst
kx + kst

. (6)

• External forces Qi due to base excitation are:

Qi = F cos(Ωt)
n∑

j=1

mj

∂wCj

∂ϕi
(7)
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Matrix Formulation

M · ϕ̈+K · (ϕ+ d ϕ̇) +N · ϕ̇2
+KB · ϕ = F (8)

To simplify the matrices for presentation purposes, we introduce indexing
parameters:

si = sin(ϕi (t)), si ,j = sin(ϕi (t)− ϕj(t)), (9a)

ci = cos(ϕi (t)), ci ,j = cos(ϕi (t)− ϕj(t)). (9b)

scn =

∑n−1
j=1 cj

n2
+

cn
2n2

, ssn =

∑n−1
j=1 sj

n2
+

sn
2n2

. (9c)
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Matrix Constructions (M · ϕ̈+K · (ϕ+ d ϕ̇) +N · ϕ̇
2
+KB · ϕ = F)

The matrices in Eq. (8) are constructed as follows:

1 Mass matrix M: This is an n × n symmetric matrix (M = M⊤):

M = 

6n−7
6n3

(n−1)c1,2
n3

· · · 3c1,n−3

n3
2c1,n−2

n3
c1,n−1

n3
c1,n
8n3

(n−1)c1,2
n3

6n−13
6n3

· · · 3c2,n−3

n3
2c2,n−2

n3
c2,n−1

n3
c2,n
8n3

...
...

. . .
...

...
...

...
3c1,n−3

n3
3c2,n−3

n3
· · · 17

6n3
2cn−3,n−2

n3
cn−3,n−1

n3
cn−3,n

8n3
2c1,n−2

n3
2c2,n−2

n3
· · · 2cn−3,n−2

n3
11
6n3

cn−2,n−1

n3
cn−2,n

8n3c1,n−1

n3
c2,n−1

n3
· · · cn−3,n−1

n3
cn−2,n−1

n3
5

6n3
cn−1,n

8n3c1,n
8n3

c2,n
8n3

· · · cn−3,n

8n3
cn−2,n

8n3
cn−1,n

8n3
1

24n3


(10)
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Matrix Constructions (M · ϕ̈+K · (ϕ+ d ϕ̇) +N · ϕ̇
2
+KB · ϕ = F)

2 Linear stiffness matrix K: This is an n × n symmetric matrix:

K = n



2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2


(11)
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Matrix Constructions (M · ϕ̈+K · (ϕ+ d ϕ̇) +N · ϕ̇
2
+KB · ϕ = F)

3 Nonlinear matrix N: This is an n × n skew-symmetric matrix representing a
portion of the system’s geometric nonlinearity:

N = 

0
(n−1)s1,2

n3
· · · 3s1,n−3

n3
2s1,n−2

n3
s1,n−1

n3
s1,n
8n3

− (n−1)s1,2
n3

0 · · · 3s2,n−3

n3
2s2,n−2

n3
s2,n−1

n3
s2,n
8n3

...
...

. . .
...

...
...

...

−3s1,n−3

n3
−3s2,n−3

n3
· · · 0

2sn−3,n−2

n3
sn−3,n−1

n3
sn−3,n

8n3

−2s1,n−2

n3
−2s2,n−2

n3
· · · −2sn−3,n−2

n3
0

sn−2,n−1

n3
sn−2,n

8n3

− s1,n−1

n3
− s2,n−1

n3
· · · − sn−3,n−1

n3
− sn−2,n−1

n3
0

sn−1,n

8n3

− s1,n
8n3

− s2,n
8n3

· · · − sn−3,n

8n3
− sn−2,n

8n3
− sn−1,n

8n3
0


(12)

12 / 41



M Parsa Rezaei

Introduction

Pendulum-Based
System Representation

Nonlinear
Henckey’s
Model

Governing Equations

Matrix Formulation

Building Matrices

Euler-Bernoulli
via Galerkin
Method

Euler-Bernoulli Problem
Overview

Beam Boundary
Conditions and PDEs

Solving PDEs via
Galerkin method

Results

Conclusion

References

Matrix Constructions (M · ϕ̈+K · (ϕ+ d ϕ̇) +N · ϕ̇
2
+KB · ϕ = F)

4 Stiffness matrix at the boundary KB : This matrix is obtained by summing
the products of the total horizontal, vertical, and angular stiffness matrices
with their respective stiffness coefficients (KTotal

x , Ky , Kϕ):

KB = kTotalx Kx + kyKy + kϕKϕ (13)

The right boundary is physically modeled by three springs: a horizontal spring
(kx), a vertical spring (ky ), and an angular spring (kϕ), therefore:

Ky = ssn


c1 0 · · · 0 0
0 c2 · · · 0 0
...

...
. . .

...
...

0 0 · · · cn−1 0
0 0 · · · 0 1

2cn

 Kϕ =


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 1

 (14)
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Matrix Constructions (M · ϕ̈+K · (ϕ+ d ϕ̇) +N · ϕ̇
2
+KB · ϕ = F)

The total horizontal Stiffness Matrix Kx incorporates both the stretching effects
and the stiffness of the horizontal boundary conditions:

Kx =

(
2n − 1

2n2
− scn

)

s1 0 · · · 0 0
0 s2 · · · 0 0
...

...
. . .

...
...

0 0 · · · sn−1 0
0 0 · · · 0 1

2sn

 (15)
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Matrix Constructions (M · ϕ̈+K · (ϕ+ d ϕ̇) +N · ϕ̇
2
+KB · ϕ = F)

5 External force vector F: This is an n × 1 vector representing the external
force due to base excitation:

F = F cos(Ωt)



(n−1)c1
n2

(n−2)c2
n2
...

cn−1

n2
cn
8n2

 (16)

6 Internal damping matrix C: The internal damping matrix is related to the
damping coefficient d and the stiffness matrix, as can be realized from
Eq. (8):

D = d K. (17)
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Building Matrices

The elements of these matrices are reformulated according to the row index
(1 ≤ i ≤ n), column index (1 ≤ j ≤ n), and the size of the matrix (n) for ease of
coding implementation, as follows:

• For i ≤ j & i = j ...n − 1:

Mi ,j =
(n − j)ci ,j

n3
, Ki ,i+1 = −n, Ki ,i+j+1 = 0,

Ni ,j =
(n − j)si ,j

n3
, KTotal

x i ,j = 0, Ky i ,j = 0,

Kϕi,j
= 0. (18)

• For j ≤ i & i = j ...n:

Mj ,i = Mi ,j , Kj ,i = Ki ,j , Nj ,i = −Ni ,j ,

Kj ,i = Ki ,j , KTotal
x j ,i = KTotal

x i ,j , Ky i ,j = Ky j ,i ,

Kϕj,i
= Kϕi,j

. (19)
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Building Matrices

• For i = j & i = 1...n − 1:

Mi ,i =
6n − 6i − 1

6n3
, Ki ,i = 2n, Ni ,i = 0,

KTotal
x i ,i = si

(
2n − 1

2n2
− scn

)
, Ky i ,i = ci ssn,

Kϕi,i
= 0, Fi ,1 =

(n − i)ci
n2

. (20)

• For i = j = n:

Mn,n =
1

24n3
, Kn,n = n, Nn,n = 0,

KTotal
x n,n =

1

2
sn

(
2n − 1

2n2
− scn

)
, Ky n,n =

1

2
cnssn,

Kϕn,n = Kϕ, Fn,1 =
cn
8n2

. (21)

17 / 41



M Parsa Rezaei

Introduction

Pendulum-Based
System Representation

Nonlinear
Henckey’s
Model

Governing Equations

Matrix Formulation

Building Matrices

Euler-Bernoulli
via Galerkin
Method

Euler-Bernoulli Problem
Overview

Beam Boundary
Conditions and PDEs

Solving PDEs via
Galerkin method

Results

Conclusion

References

Outline

1 Introduction
Pendulum-Based System Representation

2 Nonlinear Henckey’s Model
Governing Equations
Matrix Formulation
Building Matrices

3 Euler-Bernoulli via Galerkin Method
Euler-Bernoulli Problem Overview
Beam Boundary Conditions and PDEs
Solving PDEs via Galerkin method

4 Results

5 Conclusion

6 References

18 / 41



M Parsa Rezaei

Introduction

Pendulum-Based
System Representation

Nonlinear
Henckey’s
Model

Governing Equations

Matrix Formulation

Building Matrices

Euler-Bernoulli
via Galerkin
Method

Euler-Bernoulli Problem
Overview

Beam Boundary
Conditions and PDEs

Solving PDEs via
Galerkin method

Results

Conclusion

References

Formulation of Euler-Bernoulli Problem
• Focus: C-C (Clamped-Clamped) and C-F (Clamped-Free) beams.
• Define variables: Position s, time τ , horizontal displacement U, vertical

displacement W .
• Introduced non-dimensional variables:

u =
U

l
, w =

W

l
, x =

s

l
, t =

τ

T
, T =

√
ρtbwbl4

EI

Figure 3: Physical models of the C-F and C-C beam systems
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Beam Boundary Conditions and PDEs

Shortened-beam Boundaries (C-F): One edge free for sliding, inextensional.

e = 0 ⇒ (1 + u′)2 + (w ′)2 = 1, (22)

PDESh = ẅ + w (iv) + dẇ (iv) +
(
w ′w ′′2 + w ′′′w ′2)′ − F cos(Ωt) = 0 (23)

Stretched-beam Boundaries (C-C): Both ends fixed; longitudinal strain.

e ̸= 0 ⇒ e = u′ +
1

2
(w ′)2 (24)

PDESt = ẅ + w iv + dẇ iv + [w ′w ′′w ′′′]′ − 1

2
w ′

(∫ x

0
w ′2 dx

)′′
= 0 (25)

Figure 4: Configuration example of Partly-Shortened or Partly-stretched beam boundaries
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Solving PDEs via Galerkin method

w(x , t) =

Nm∑
i=1

ai (t)ψi (x), (26)

ψi (x) = A1 cosh(
√
ωix) + A2 sinh(

√
ωix) + A3 sin(

√
ωix) + A4 cos(

√
ωix). (27)

w(x , t) becomes after normalizing the shape:

w(x , t) =
Nm∑
i=1

aNormi (t)ψNorm
i (x), (28)

Substituting into the PDEs:

1 For shortened-beam:

ODEj =

∫ 1

0

ψNorm
j (x)PDESh dx . (29)

2 For stretched-beam:

ODEj =

∫ 1

0

ψNorm
j (x)PDESt dx . (30)
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System Properties

For validation, We selected a sample system similar to a widely available steel
ruler beam, ensuring accessibility for future experimental investigations.

Table 1: Geometrical and mechanical properties of the considered system

l (cm) w (cm) tb (cm) E (GPa) ρb (kg/m3) d

50 2.6 0.8 200 7850 0.002

Table 2: Abbreviations

Abbreviation Description
LEB Linear Euler-Bernoulli model discretized via

Galerkin method
NEB Nonlinear Euler-Bernoulli model discretized via

Galerkin method
NH Nonlinear Hencky beam Model method
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Validation Results: Static Analysis of Time History (n=25)

(a) C-F beam (midpoint) (b) C-C beam (midpoint)

Figure 5: Comparison of NH with 26 elements (n = 25), LEB, and NEB with 3 modes
(Nm = 3): Static time history analysis (Ω = 0) subjected to a force of F = 1.6.
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Validation Results: Static Analysis of deflection (n=25)

(a) C-F beam at t = 700. (b) C-C beam at t = 25.

Figure 6: Comparison of NH with 26 elements (n = 25), LEB, and NEB with 3 modes
(Nm = 3): Static deflection (Ω = 0) after stabilization subjected to a force of F = 1.6.
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Validation Results: Dynamic Analysis of Time History
(n=25)

(a) C-F Beam (Endpoint) subjected to a
force of F = 0.0016 from t = 0 to t = 25.

(b) C-C Beam (Midpoint) subjected to a
force of F = 0.08 from t = 0 to t = 700.

Figure 7: Comparison of NH with 26 elements (n = 25), LEB, and NEB with 3 modes
(Nm = 3): Time History Analysis Near the First Resonance Frequency (Ω = ω1).
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Validation Results: Dynamic Analysis of Time History
(n=52)

Figure 8: Comparison of NH with 52 elements (n=51), LEB, and NEB with 3 modes
(Nm = 3): Time History Analysis near the first resonance frequency Ω = ω1 for a C-C
beam (midpoint) subjected to a force of F = 0.08 from t = 0 to t = 700.
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Validation Results: Frequency Response Analysis (n=25)

(a) C-F beam (endpoint) subjected to a
force of F = 0.0016.

(b) C-C beam (midpoint) subjected to a
force of F = 0.08.

Figure 9: Comparison of NH with 26 elements (n = 25), LEB, and NEB with 3 modes
(Nm = 3): Frequency Response Analysis near the first resonance frequency (Ω ≈ ω1).
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Validation Results: Frequency Response Analysis (n=51)

Figure 10: Comparison of NH with 52 elements (n = 51), LEB, and NEB with 3 modes
(Nm = 3): Frequency Response Analysis near the first resonance frequency (Ω ≈ ω1) for
C-C beam (midpoint) subjected to a force of F = 0.08.
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Applications: Nonlinear analysis for large deflections and certain supports

This section explores a configuration where the horizontal spring stiffness kx is
finite, making the system neither fully free nor clamped.

Static deflection after stabilization (Ω = 0,
F = 1.6, t = 700) for varying kx . Increasing kx
reduces static deflection.

Schematic of a clamped-free beam with a spring
(kx ) at the free end.

Figure 11: Effect of spring stiffness kx on beam behavior.
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Dynamic response: Influence of kx

Frequency response for 0 ≤ Ω ≤ 45 and varying kx . First and second resonances both shift rightward and
reduce in magnitude as kx increases.
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Zoom: First resonance region

Frequency response near first resonance (0 ≤ Ω ≤ 10). Hardening behavior increases with kx .
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Zoom: Second resonance region

Frequency response near second resonance (21 ≤ Ω ≤ 24). Behavior shifts from softening (kx < 100) to
hardening (kx > 100).
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Cantilever response: First resonance

Nayfeh and Pai confirm these findings in their study of the nonlinear behavior of
cantilever beams. They discovered that this nonlinear behavior arises from a
combination of hardening and softening effects. The overall nonlinear response
depends on the balance between these two effects. Specifically, the first resonance
mode demonstrates hardening,

Frequency response near ω1 = 3.52 with F = 0.08 for cantilever (kx = 0). Hardening behavior is evident.34 / 41
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Cantilever response: Second resonance

, whereas higher modes tend to exhibit softening [3].

Frequency response near ω2 = 22.03 with F = 1.6 for cantilever (kx = 0). Clear softening behavior
observed.
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Conclusion

• Validation using the Galerkin method confirmed that Hencky’s models are
effective for both cantilever and clamped-clamped beams.

• Hencky’s models overcome the limitations of the nonlinear Euler-Bernoulli:
1 The Euler-Bernoulli model only applies to small deflections, while Hencky’s

models handle both small and large deflections.
2 The Euler-Bernoulli model struggles with partially shortened or stretched

boundaries, but Hencky’s models do not have these boundary restrictions.

Future Research:
• Despite the complexity, Hencky’s models can be applied to nonlinear dynamic
studies of beams with partially shortened or stretched boundaries.

• Explore nonlinear behaviors in beams with varying boundary conditions, such
as different slope angles.
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