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Regular Perturbation Method

Consider a Duffing oscillator, which we solve using the Regular
Perturbation Method (RPM), also known as the Straightforward
Method. This problem shows an interesting challenge because it is
singularly perturbed; in other words, its natural frequency is equal
to one.

We solve a nonlinear second-order ODE, where the nonlinearity
arises from the cubic term y3, and € is a small parameter:

v +y+e=0 (1)
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Solution:
Apply 2"¢ law of Newton and rearrange the Equation (1), we get

Fly)=—y—ey® (2)

where F(y) is a restoring force for a weakly non-linear spring. Here,
we have three cases of «,

@ if € > 0 then the spring is hard.
@ if ¢ = 0 then the spring is linear.
@ if € < 0 then the spring is soft.

Let, our expected solution y(t,€) to be periodic in “t" (since no
damping and external force present). Now, we try to approximate

y" for small e i.e

y(t,€) = yo(t) + eyi(t) + 2ya(t) + ... (3)



Regular Perturbation Method
[e]e] lelelele]

EE

Now, we plugged Equation (3) into (1) also neglect €2 and higher

powers,
(Vo ()F+eyr (8)+-)+(vo(t) +eya(t)+...) +e(yo(t)+eya(t)+..)° = 0
(4)
Compare the powers of order 1 and order € we get,
O(1):yo +y0 =0 ()
O() i y1 +y1+y5 =0 (6)

Now, we solve both Equations (5) and (6) one by one. The initial
conditions for Equation (5) are yo(0) = 1 and yp(0) = 0. Applying
these initial conditions, we obtain:

yo(t) = cos(t). (7)
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Next, we consider Equation (6) and rearrange it. Substituting the
value of yo(t) into the left side gives us:

Vi+yr=— cos3(t). (8)

We can express cos3(t) using trigonometric identities, which allows
us to rewrite Equation (8) in the form:

iy =~ cos(3t) — - cos(t). 9)
Now, we have two cases first solve the R.H.S of Equation (9) for
—2 cos(t) and then for —2 cos(3t) respectively. For both cases
Equation (9) is nonhomogeneous D.E. So, we solved it by method
of undetermined coefficient. In this method we shall find the
solution of given D.E as

f(D)yr = &g(x) (10)
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Its general solution will be

vi(t)=ye+yp (11)

where y. is determined by the homogeneous part of the equation.
For y, we assume a specific form for the solution, which will include
unknown coefficients that we can solve for using various techniques
based on the form of g(x).

First, form Equation (9), we find y. by setting y1 + y1=0:

ye = Acos(t) + Bsin(t) (12)

where A and B are constants.
Next, we assume a particular solution in the following
representation:

yp = t* (c1 cos(t) + casin(t)) . (13)
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Therefore, y, for the first case of Equation (9) becomes:

Yp = —gtsin(t). (14)
For the second case of Equation (9), we obtain:

1
Yo =35 cos(3t). (15)

By combining y. and y, in Equation (11):

y1(t) = Acos(t) + Bsin(t) + 3—12 cos(3t) — gtsin(t). (16)
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Apply the initial conditions and solve Equation (16) after
simplifying the results, one finds A = —3% and B =0. Thus,

yi(t) = 3i2 (cos(3t) — cos(t)) — gtsin(t). (17)
Finally, substituting yo(t) and y1(t) into Equation (3), we obtain:
y(t,€) = cos(t)

+e %(cos(3t) — cos(t)) — gtsin(t) + O(€?).

(18)

The approximate analytical solution, as given by Equation (18), and
the numerical solution modeling the Duffing oscillator expressed by
Equation (1) are presented in Figure 1.
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Figure: Approximate analytical and numerical solution of Duffing
oscillator for € = 0.1.
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Conclusion of RP Method

Concluding, the term —3 cos(t) causes resonance because cos(t)

satisfies the homogeneous solution, leading to a secular term of
—%tsin(t), as shown in Figure 1a. The response grows indefinitely
due to resonance, becoming unbounded as t — oco. Consequently,
the error between the analytical and numerical solutions increases
rapidly, as illustrated in Figure 1b. A fundamental weakness in
regular perturbation theory is the assumption that the frequency is
given by the unperturbed frequency w = 1, which leads to
inaccuracies in the analysis.
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Poincaré-Lindstedt Method

Now we solve the same Duffing oscillator with the help of
Poincaré-Lindstedt Method.

We solve a nonlinear second-order ODE, where the nonlinearity
arises from the cubic term y3, and € is a small parameter:

Vy+y+e=0. (19)
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Solution:
The above Equation (19) can be interpreted as a perturbed
harmonic oscillator equation, the solution of which can be found as

follows. Let

T = wt, (20)
where t is the stretched time and w = w(e) is a power series such
that w = wp + ew; + €2wa + ... . We will determine w by insisting

that it is the true frequency, and hence the solution is 27-periodic
in 7. Converting the problem to one, we can solve it using the

RPM, we have: J 4y d

. y T y

Y= at T drdae Y ()
Similarly, we have: .

. Now, the differential equation takes the form:

WY 4+ Y +eY?=0, (23)
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Putting the approximation and w into Equation (23) and comparing
the powers of order 1 and €. After that we solve order 1 nad ¢, we
obtain:
Yo(7) = cos(7). (24)
Y1 + Y1 = — cos>(7) 4 2wy cos(7). (25)
Using trigonometric identities to express cos>(7), we substitute it
into Equation (25) and rearrange the terms, yielding:

Yi+ Y= —% cos(37) — (z - 2w1> cos(T). (26)

The term cos(7) will cause resonance (i.e., produce a secular term)
unless we eliminate it by choosing wy = %. This choice of wy allows
us to avoid the secular term. Substituting the values of wg and wy,
we find:

w=1+ ge + 0(é?). (27)

This choice ensures that the solution is 2m-periodiciin .
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Next, we solve Equation (26), which is a nonhomogeneous
differential equation. After solving it, we get:

Y1 cos(37) — cos(7)) . (28)

:372(

Substituting the values of Yy and Y7, we obtain:

Y(7) = cos(7) + 3% (cos(37) — cos(7)) + O(¢?). (29)

This equation indicates that there are no secular terms present,
ensuring that the solution remains bounded for all values of 7.
Now, substituting 7 = (1 + 3¢) t into Equation (29), we find:

Y(t) ~ cos [(1 + Ze> t] +0(). (30)
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Figure: Approximate analytical and numerical solutions of the Duffing
oscillator, as described by Equation (19), for ¢ = 0.1.
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Conclusion of PL Method

Concluding, as demonstrated in the example, the PLM is ineffective
for analyzing stability or transient behavior. However, it serves as a
valuable method for generating asymptotic approximations for
periodic solutions, as illustrated in Figure 2a. Although the error
shown in Figure 2b gradually increases, the values are very small
compared to the observations in Figure 1b. The method is not
suitable for obtaining solutions that evolve in an aperiodic manner
over slow time scales.
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Multiple Scale Method

Consider a linear weekly damped oscillator and apply MMS for
approximate analytical solutions:

X+2ex+x=0. (31)
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Solution:
Let
To =t, T1 = €t, (32)

where Tg is a fast time and T7 is a slow time.
Instead of establishing x as a function of t, we establish x as a
function of both, Tg and Ty, i.e.

x(t;e) =x(To, T1;€). (33)

It should be noted that as the actual time t increases, the fast time
To increases at the same rate, while the slower time T7 increases
more gradually. Applying the chain rule, we get:

d _ 9x 0Ty . Ox 9T
EX(TO’ )= aT, 0t 0T, ot (34)
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As we know that from Equation (32), % =1and % =€

Putting these into Equation (34) and solving, we get:
dx  Ox Ox

K= — = — +e=——. 35
XTd& ot om (35)
Similarly, for the second derivative, we obtain:
d’x  9x 9%x 5 0%x
K= = 2 ) 36
XTar T aTe T omem ¢ ot (30)

Now, substituting Equations (35) and (36) into Equation (31) and
neglecting € and higher powers, we get:

0%x Lo 9%x ) Ox N
X
a12 " “0To0T | 0T,

Considering the approximation:

X(t) = X(To, Tl) ~ (XO (TO, Tl) + ex1 (To, Tl) + ... ), (38)

= 0. (37)
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we substitute Equation (38) into (37), while neglecting €2 and
higher powers. After that:

9?xq 9xg 0xo 9%xg
‘ <8T02 e 2T, +X1> + <8T2 +X°> =0 (39)

We compare powers of order 1 and €. For order O(1), we get:

0?
0(1) 87)_(3 +x =0. (40)
2
o) X1, 0%, 500 +x =0. (41)

oTZ  9TedTy 0Ty
Solving Equation (40), we have:
xo = A(Ty)cos(To) + B(T1)sin(To), (42)

where A and B are constant with respect to Ty, but are functions
of Tl.



Multiple Scale Method
[e]e]e]e] o)

EE

Rearranging Equation (41), we get:

82X1
—_— = —2
T2 + X1 <

82X0 (9X0 > (43)

0TodT: 0Ty
After finding the derivatives of g—)ﬁ(’) and 678‘5()9(0T1 and substituting
them into Equation (43), simplifying and rearranging, we obtain the
final form of the equation:
9%xq
oTZ

+x1 =2 <8a7/'\1 + A(T1)> sin(Tp)—2 <§_,Bil + B(Tl)) cos(Tp).
(44)

Here, (667741 + A( Tl)) and (g—“% + B(T1)> are secular terms that

cause resonance. To eliminate these terms, we set them equal to
zero and solve the resulting equations. After solving, we find:

A=ae ', B=be "1 (45)
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Substituting the values of A and B into Equation (42), we get:
xo = ae~ " cos(To) + be™ "t sin(Tp). (46)

Now, we have the initial conditions:

€ ICL: x(0,0) =1,

g IC2: %7%0) =0.

Now, we solve Equation (46) using IC1 and IC2. We find a =1 and
b = 0. Putting these values into Equation (46) yields:

xo = e~ "1 cos( Tp). (47)

Next, we substitute xp from Equation (47) into Equation (38), and
replace To and Ty with their original variables t and et. Finally, we
find:

x = e “cos(t) + O(e), (48)

being uniformly valid for t = O(1).



Multiple Scale Method
[ le]

Figures

1 T
Exact y(t) 1
0.8 egular Perturbation Solution
08
0.6 0.6
0.4 04
0.2 0.2
< o0 E o
0.2 0.2
0.4
0.4
0.6
0.6
0.8
0.8
1
' 0 ll\l .’lU “0 I‘U 3‘(] 0 10 20 30 10 50
t t
(a) Comparison of solutions (b) The error in time

Figure: Approximate analytical RPM and exact solution of linear damped
mass-spring system with no external forces for e = 0.02.
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Figure: Approximate analytical MMS and exact solution of linear damped
mass-spring system with no external forces for e = 0.02.
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Conclusion of MS Method

First, we compare the Regular Perturbation Method (RPM). The
RPM solution (Figure 3a, dashed line) diverges from the numerical
solution after approximately 23 seconds, tending toward infinity.
Figure 3b highlights the steady asymptotic growth of the estimation
error.

In Figure Figure 4a, applying MMS shows convergence with the
numerical solution, while Figure 4b shows a decreasing error after
each oscillation, confirming the superior efficiency of the MS
method.
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Table A5: Advantages and Disadvantages of Methods for Solving Nonlinear DEs

Method

Advantages

Disadvantages

Perturbation

Method

Simplifies complex nonlinear equations,
provides insight into weakly nonlinear
systems, and is applicable for small
deviations.

Resonance cause sccular terms, only
work well for single scale problem,
unsuitable for strongly nonlincar sys-

tems.

Poincaré-Lindstedt
Method

Eliminates sccular terms, cffective for
periodic solutions.

Ineffective for stability analysis or tran-
sient behavior, not suitable for aperiodic
solutions.

Method of Multiple
Scales

Captures  dynamics across multiple
scales, avoid secular terms, versatile for

nonlinear systems.

Challenging to identify relevant scale,

computationally intensive, scric

vergence not guaranteed.

35 con-
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Table A3: Real World Applications of Methods for Solving Nonlinear DEs

Method Applications
Perturbation Duffing oscillators, nonlinear Schrédinger equation [19], Korteweg-de Vries
Method equation [18], mechanical vibrations, quantum mechanics, and fluid dynamics.

Poincaré-Lindstedt  Non-linear vibration problem of multilayer plates consisting of NHOLs [164], linear
Method damped mass-spring system with no external forces.

Method of Multiple Mechanical parametric oscillator with dry friction [62], 4-DOF variable-length
Scales pendulum (73], a piezoelectric transducer embedded in a nonlinear damped
dynamical system [165].
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