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Regular Perturbation Method

Consider a Duffing oscillator, which we solve using the Regular
Perturbation Method (RPM), also known as the Straightforward
Method. This problem shows an interesting challenge because it is
singularly perturbed; in other words, its natural frequency is equal
to one.

Example
We solve a nonlinear second-order ODE, where the nonlinearity
arises from the cubic term y3, and ϵ is a small parameter:

y
′′
+ y + ϵy3 = 0 (1)
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Example

Solution:
Apply 2nd law of Newton and rearrange the Equation (1), we get

F (y) = −y − ϵy3 (2)

where F (y) is a restoring force for a weakly non-linear spring. Here,
we have three cases of ϵ,

if ϵ > 0 then the spring is hard.
if ϵ = 0 then the spring is linear.
if ϵ < 0 then the spring is soft.

Let, our expected solution y(t, ϵ) to be periodic in “t” (since no
damping and external force present). Now, we try to approximate
“y” for small ϵ i.e

y(t, ϵ) = y0(t) + ϵy1(t) + ϵ2y2(t) + ... (3)
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Now, we plugged Equation (3) into (1) also neglect ϵ2 and higher
powers,

(y
′′
0 (t)+ϵy

′′
1 (t)+...)+(y0(t)+ϵy1(t)+...)+ϵ(y0(t)+ϵy1(t)+...)3 = 0

(4)

Compare the powers of order 1 and order ϵ we get,

O(1) : y
′′
0 + y0 = 0 (5)

O(ϵ) : y
′′
1 + y1 + y3

0 = 0 (6)

Now, we solve both Equations (5) and (6) one by one. The initial
conditions for Equation (5) are y0(0) = 1 and ẏ0(0) = 0. Applying
these initial conditions, we obtain:

y0(t) = cos(t). (7)
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Next, we consider Equation (6) and rearrange it. Substituting the
value of y0(t) into the left side gives us:

ÿ1 + y1 = − cos3(t). (8)

We can express cos3(t) using trigonometric identities, which allows
us to rewrite Equation (8) in the form:

ÿ1 + y1 = −1
4
cos(3t)− 3

4
cos(t). (9)

Now, we have two cases first solve the R.H.S of Equation (9) for
−3

4 cos(t) and then for −1
4 cos(3t) respectively. For both cases

Equation (9) is nonhomogeneous D.E. So, we solved it by method
of undetermined coefficient. In this method we shall find the
solution of given D.E as

f (D)y1 = g(x) (10)
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Its general solution will be

y1(t) = yc + yp (11)

where yc is determined by the homogeneous part of the equation.
For yp we assume a specific form for the solution, which will include
unknown coefficients that we can solve for using various techniques
based on the form of g(x).
First, form Equation (9), we find yc by setting ÿ1 + y1=0:

yc = A cos(t) + B sin(t) (12)

where A and B are constants.
Next, we assume a particular solution in the following
representation:

yp = tk (c1 cos(t) + c2 sin(t)) . (13)
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Therefore, yp for the first case of Equation (9) becomes:

yp = −3
8
t sin(t) . (14)

For the second case of Equation (9), we obtain:

yp =
1
32

cos(3t) . (15)

By combining yc and yp in Equation (11):

y1(t) = A cos(t) + B sin(t) +
1
32

cos(3t)− 3
8
t sin(t). (16)
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Apply the initial conditions and solve Equation (16) after
simplifying the results, one finds A = − 1

32 and B = 0. Thus,

y1(t) =
1
32

(cos(3t)− cos(t))− 3
8
t sin(t). (17)

Finally, substituting y0(t) and y1(t) into Equation (3), we obtain:

y(t, ϵ) = cos(t)

+ ϵ

[
1
32

(cos(3t)− cos(t))− 3
8
t sin(t)

]
+ O(ϵ2).

(18)

The approximate analytical solution, as given by Equation (18), and
the numerical solution modeling the Duffing oscillator expressed by
Equation (1) are presented in Figure 1.
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Figures

(a) Comparison of solutions (b) The error in time

Figure: Approximate analytical and numerical solution of Duffing
oscillator for ϵ = 0.1.
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Conclusion of RP Method

Concluding, the term −3
4 cos(t) causes resonance because cos(t)

satisfies the homogeneous solution, leading to a secular term of
−3

8 t sin(t), as shown in Figure 1a. The response grows indefinitely
due to resonance, becoming unbounded as t → ∞. Consequently,
the error between the analytical and numerical solutions increases
rapidly, as illustrated in Figure 1b. A fundamental weakness in
regular perturbation theory is the assumption that the frequency is
given by the unperturbed frequency ω = 1, which leads to
inaccuracies in the analysis.
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Poincaré-Lindstedt Method

Now we solve the same Duffing oscillator with the help of
Poincaré-Lindstedt Method.

Example
We solve a nonlinear second-order ODE, where the nonlinearity
arises from the cubic term y3, and ϵ is a small parameter:

ÿ + y + ϵy3 = 0. (19)
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Solution:
The above Equation (19) can be interpreted as a perturbed
harmonic oscillator equation, the solution of which can be found as
follows. Let

τ = ωt, (20)

where t is the stretched time and ω = ω(ϵ) is a power series such
that ω = ω0 + ϵω1 + ϵ2ω2 + . . . . We will determine ω by insisting
that it is the true frequency, and hence the solution is 2π-periodic
in τ . Converting the problem to one, we can solve it using the
RPM, we have:

ẏ =
dy

dt
=

dY

dτ

dτ

dt
= ωẎ . (21)

Similarly, we have:
ÿ = ω2Ÿ . (22)

. Now, the differential equation takes the form:

ω2Ÿ + Y + ϵY 3 = 0, (23)
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Putting the approximation and ω into Equation (23) and comparing
the powers of order 1 and ϵ. After that we solve order 1 nad ϵ, we
obtain:

Y0(τ) = cos(τ). (24)

Ÿ1 + Y1 = − cos3(τ) + 2ω1 cos(τ). (25)

Using trigonometric identities to express cos3(τ), we substitute it
into Equation (25) and rearrange the terms, yielding:

Ÿ1 + Y1 = −1
4
cos(3τ)−

(
3
4
− 2ω1

)
cos(τ). (26)

The term cos(τ) will cause resonance (i.e., produce a secular term)
unless we eliminate it by choosing ω1 = 3

8 . This choice of ω1 allows
us to avoid the secular term. Substituting the values of ω0 and ω1,
we find:

ω = 1 +
3
8
ϵ+ O(ϵ2) . (27)

This choice ensures that the solution is 2π-periodic in τ .
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Next, we solve Equation (26), which is a nonhomogeneous
differential equation. After solving it, we get:

Y1 =
1
32

(cos(3τ)− cos(τ)) . (28)

Substituting the values of Y0 and Y1, we obtain:

Y (τ) = cos(τ) +
1
32

(cos(3τ)− cos(τ)) + O(ϵ2). (29)

This equation indicates that there are no secular terms present,
ensuring that the solution remains bounded for all values of τ .
Now, substituting τ =

(
1 + 3

8ϵ
)
t into Equation (29), we find:

Y (t) ≈ cos

[(
1 +

3
8
ϵ

)
t

]
+ O(ϵ) . (30)
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Figures

(a) Comparison of solutions (b) Error

Figure: Approximate analytical and numerical solutions of the Duffing
oscillator, as described by Equation (19), for ϵ = 0.1.
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Conclusion of PL Method

Concluding, as demonstrated in the example, the PLM is ineffective
for analyzing stability or transient behavior. However, it serves as a
valuable method for generating asymptotic approximations for
periodic solutions, as illustrated in Figure 2a. Although the error
shown in Figure 2b gradually increases, the values are very small
compared to the observations in Figure 1b. The method is not
suitable for obtaining solutions that evolve in an aperiodic manner
over slow time scales.
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Multiple Scale Method

Example
Consider a linear weekly damped oscillator and apply MMS for
approximate analytical solutions:

ẍ + 2ϵẋ + x = 0. (31)
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Example

Solution:
Let

T0 = t, T1 = ϵt, (32)

where T0 is a fast time and T1 is a slow time.
Instead of establishing x as a function of t, we establish x as a
function of both, T0 and T1, i.e.

x (t; ϵ) = x (T0,T1; ϵ) . (33)

It should be noted that as the actual time t increases, the fast time
T0 increases at the same rate, while the slower time T1 increases
more gradually. Applying the chain rule, we get:

d

dt
x(T0,T1) =

∂x

∂T0

∂T0

∂t
+

∂x

∂T1

∂T1

∂t
. (34)
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As we know that from Equation (32), ∂T0
∂t = 1 and ∂T1

∂t = ϵ.
Putting these into Equation (34) and solving, we get:

ẋ =
dx

dt
=

∂x

∂T0
+ ϵ

∂x

∂T1
. (35)

Similarly, for the second derivative, we obtain:

ẍ =
d2x

dt2
=

∂2x

∂T 2
0
+ 2ϵ

∂2x

∂T0∂T1
+ ϵ2

∂2x

∂T 2
1
. (36)

Now, substituting Equations (35) and (36) into Equation (31) and
neglecting ϵ2 and higher powers, we get:

∂2x

∂T 2
0
+ 2ϵ

∂2x

∂T0∂T1
+ 2ϵ

∂x

∂T0
+ x = 0. (37)

Considering the approximation:

x(t) = x (T0,T1) ∼ (x0 (T0,T1) + ϵx1 (T0,T1) + . . . ) , (38)
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we substitute Equation (38) into (37), while neglecting ϵ2 and
higher powers. After that:

ϵ

(
∂2x1

∂T 2
0
+ 2

∂2x0

∂T0∂T1
+ 2

∂x0

∂T0
+ x1

)
+

(
∂2x0

∂T 2
0
+ x0

)
= 0. (39)

We compare powers of order 1 and ϵ. For order O(1), we get:

O(1) :
∂2x0

∂T 2
0
+ x0 = 0. (40)

O(ϵ) :
∂2x1

∂T 2
0
+ 2

∂2x0

∂T0∂T1
+ 2

∂x0

∂T0
+ x1 = 0. (41)

Solving Equation (40), we have:

x0 = A(T1) cos(T0) + B(T1) sin(T0), (42)

where A and B are constant with respect to T0, but are functions
of T1.
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Rearranging Equation (41), we get:

∂2x1

∂T 2
0
+ x1 = −2

(
∂2x0

∂T0∂T1
+

∂x0

∂T0

)
. (43)

After finding the derivatives of ∂x0
∂T0

and ∂2x0
∂T0∂T1

and substituting
them into Equation (43), simplifying and rearranging, we obtain the
final form of the equation:

∂2x1

∂T 2
0
+x1 = 2

(
∂A

∂T1
+ A(T1)

)
sin(T0)−2

(
∂B

∂T1
+ B(T1)

)
cos(T0).

(44)

Here,
(

∂A
∂T1

+ A(T1)
)

and
(

∂B
∂T1

+ B(T1)
)

are secular terms that
cause resonance. To eliminate these terms, we set them equal to
zero and solve the resulting equations. After solving, we find:

A = ae−T1 , B = be−T1 . (45)
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Substituting the values of A and B into Equation (42), we get:

x0 = ae−T1 cos(T0) + be−T1 sin(T0). (46)

Now, we have the initial conditions:
label=– IC1: x0(0, 0) = 1,
lbbel=– IC2: ∂x0(0,0)

∂T0
= 0.

Now, we solve Equation (46) using IC1 and IC2. We find a = 1 and
b = 0. Putting these values into Equation (46) yields:

x0 = e−T1 cos(T0). (47)

Next, we substitute x0 from Equation (47) into Equation (38), and
replace T0 and T1 with their original variables t and ϵt. Finally, we
find:

x = e−ϵt cos(t) + O(ϵ), (48)

being uniformly valid for t = O(1
ϵ ).
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Figures

(a) Comparison of solutions (b) The error in time

Figure: Approximate analytical RPM and exact solution of linear damped
mass-spring system with no external forces for ϵ = 0.02.
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Figures

(a) Comparison of solutions (b) The error in time

Figure: Approximate analytical MMS and exact solution of linear damped
mass-spring system with no external forces for ϵ = 0.02.
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Conclusion of MS Method

First, we compare the Regular Perturbation Method (RPM). The
RPM solution (Figure 3a, dashed line) diverges from the numerical
solution after approximately 23 seconds, tending toward infinity.
Figure 3b highlights the steady asymptotic growth of the estimation
error.
In Figure Figure 4a, applying MMS shows convergence with the
numerical solution, while Figure 4b shows a decreasing error after
each oscillation, confirming the superior efficiency of the MS
method.
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