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Model description

Fig. 1. One degree of freedom mechanical parametric oscillator (Lab view) 

1. neodymium magnets,

2. clamps for magnets,

3. movable bearing block,

4. movable clamp of the flexible beam,

5. flexible beam,

6. manual brakes,

7. movable cart,

8. Hall sensor of the movable cart,

9. profile rail with magnetic tape,

10. fixed cart,

11. Hall sensor of the fixed cart,

12. profile rail,

13. magnetic ruler, 

14. fixed clamp of the flexible beam, 

15. fixed bearing block, 

16. flexible clutch,

17. stepper motor with built-in encoder
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Mathematical model: 

Dimensional equation of the system

Non-Dimensional equation of the system

Define a non-dimensional time τ = ωₙ · t, and the non-dimensional displacement of the system as y=
𝑥

𝛿
:

By restricting the magnetic stiffness to the 3rd term and expanding it into the Maclaurin series in Eq. (2), we get

(1)

(3)

(4)

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑇
ሶ𝑥

ሶ𝑥2 + 𝜀2
+

𝑘𝜉 + 𝑘𝜂

2
+

𝑘𝜉 − 𝑘𝜂

2
cos 2Ω𝑡 𝑥 + 𝐹𝑀0

1

1 + 𝑑 𝛿 − 𝑥 4 −
1

1 + 𝑑 𝛿 + 𝑥 4 = 0.

Assuming that all of the components are ideal, the system can be described by a second-order ODE as follows:

𝑦′′ + 2𝜁𝑦′ + 𝜎
𝑦′

𝑦′2
+𝜖2

+ 𝑝 + 𝑞cos 2𝜔𝜏 𝑦 + 𝑓𝑚0
1

1+𝐷 1−𝑦 4 −
1

1+𝐷 1+𝑦 4 = 0. (2)

𝑦′′ + 2𝜁𝑦′ + 𝜎𝑓 𝑦′ + 1 + 𝑞cos 2𝜔𝜏 𝑦 + 𝜅3𝑦3 + 𝜅5𝑦5 = 0.

The dry friction function 𝑓0 𝑦′ =
𝑦′

𝑦′2
+𝜖2

, is defined in accordance with the coulomb law, as follows;

= 1, if y' > 0,    (a)

∈ [-1, 1], if y' = 0,    (b)

= -1, if y' < 0.    (c)

𝑓0 𝑦′
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Parameter Value Unit Parameter Value Unit

FM0 400.96 N d 46.628 m⁻⁴

σ 0.0096264 kg T 1.5117 N

δ 0.02 m ε 1.54 ⋅ 10−4 m/s

kξ 271 N/m c 16.4754 N.s/m

kη 4336 N/m fM0 2.5532 -

D 0.93255 ζ 0.043576 -

𝜅1 0.70664 - 𝜅3 0.82272 -

p 0.29336 - q 0.25885 -

Table.1: The parameters involved in the dimensional and non-
dimensional equations (1) and (3)



Fig. 2. Stiffness characteristics for full nonlinear model 

and its approximation by a 3rd and 5th degree polynomial

Analytical solutions

Solutions of the Eq. (3) by MMS
Here, MMS is used, and Eq. (3) becomes

where 𝜖 is a small parameter. Defining the three-time variables T0= 𝜏 

(fast time), T1= 𝜖𝜏 (slow time).

The first order two-time scale expansion

The general solution of Eq. (5) can be written as;

(5)

Collecting the like powers of 𝜖 and equating it to zero, then we will get 

the set of equations. Solving the first equation for y0

(7)

To finding the y1, we will equate the coefficients of first power of 𝜖 to 

zero and  using Eq. (7) also, we will get

(8)

𝑦′′ + 2𝜖𝜁𝑦′ + 𝜎𝜖𝑓 𝑦′ + 1 + 𝑞𝜖cos 2𝜔𝜏 𝑦 + 𝜖𝜅3𝑦3 + 𝜖𝜅5𝑦5 = 0,

y(τ, ε) = y₀(T₀, T₁) + 𝜖 y₁(T₀, T₁) + O(𝜖 ²). (6)

y₀ = A(T₁) 𝑒iT₀ + A̅(T₁) 𝑒−iT₀.

D₀² y₁ + y₁ = − κ₅ A⁵ 𝑒5iT₀ −(5 A⁴ A̅ κ₅ + κ₃ A³) 𝑒3iT₀ + [-10 A³ A̅² κ₅−3 κ₃ A² A̅ − 2i D₁ A − 2i ζ A] 

𝑒iT₀ −
q

2
[A 𝑒i(2ω+1)T₀+ A̅ 𝑒i(2ω−1)T₀] − σ f₀(i A 𝑒iT₀ −i A̅ 𝑒−iT₀)+cc.

Further we have to evaluate the implicit terms in f₀ and we also introduce detuning parameter
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(9)

ω = 1 + 𝜖
σ

2
, using it into (8), and the resonant terms in the resulting equation must disappear in order to remove 

secular terms, providing the solvability condition

− 10 𝐴3A̅^2 κ₅−3κ₃𝐴2A̅−2iD₁A−2iζA−
q

2
 A̅ 𝑒iσT₁ −σ c₁ = 0.

The real and imaginary components of the solvability condition are then separated using the polar form A =
1

2
 𝑎𝑚𝑠 𝑒𝑖β, 

making the system autonomous by using Ψ = 
σ

2
 T₁ − β, and after some calculation by using Maple, finally we get the 

10th degree polynomial:

25

256
𝑎𝑚𝑠

10  κ5
2+ 

15

64
𝑎𝑚𝑠

8  κ5κ3+ (
9

64
κ3

2 −
5

16
 q κ5)𝑎𝑚𝑠

6 −
3

8
 q 𝑎𝑚𝑠

4 κ3 + (
1

4
σ2 −

1

16
 q2 + ζ2) 𝑎𝑚𝑠

2  

+
4

π
 ζ σ 𝑎𝑚𝑠+

4

π2 σ2 = 0.
(10)

The solution for Ψ is as follows: Ψ = 
1

2
 tan⁻¹

− 2ζ 𝑎𝑚𝑠−
4

π σ

σ 𝑎𝑚𝑠−
5

8
𝑎𝑚𝑠

5 κ5+
3

4
𝑎𝑚𝑠

3 κ3

. (11)

Solutions of the Eq. (3) by HBM
Here, Using the HBM, the Eq. (3) is reformulated by applying a Fourier series formalism of the angular displacement, 

considering only a single harmonic below
y(τ) = 𝑎𝑚𝑠 cos ϕ(τ), ϕ(τ) = ωτ + β, (12)

where 𝑎𝑚𝑠 is the amplitude, and the phase is represented 

by 𝛽. The dry friction phase is extended as well, 

employing a single-term Fourier series of the form

f₀(y') = f𝑐 cos(ϕ) + f𝑠 sin(ϕ),

         = f𝑐 cos(ωτ) + f𝑐 sin(ωτ).
(13)
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where fc and fs are the coefficients of the expansion, using (12), (13) into (3):

We noticed that 𝑎 = 0 is a trivial case, and it is not a solution to the above system. Squaring and adding the Eq. (15) 

to eliminate the 2𝛽, we obtain

From Eq. (15), we can write

(14)

Where the coefficients of the expansion fc and fs are read as follows

(15)

(16)

[σ fₛ−2𝑎𝑚𝑠ωζ + 
1

2
 q𝑎𝑚𝑠sin(2β)]sin(ϕ) + [𝑎𝑚𝑠+ σ fc − 𝑎𝑚𝑠ω² + 

1

2
 q 𝑎𝑚𝑠 cos(2β)+ 

3

4
 κ₃ 𝑎𝑚𝑠

3 + 
5

4
 κ₅ 𝑎𝑚𝑠

5 ]cos(ϕ) = 0,

fc = 0,

fs = 
−4

π
,

− 2𝑎𝑚𝑠 ω ζ −
4

π
σ + 

1

2
q 𝑎𝑚𝑠sin(2β) = 0,

𝑎𝑚𝑠 − 𝑎𝑚𝑠ω² + 
1

2
q 𝑎𝑚𝑠cos(2β) + 

3

4
 κ₃ 𝑎𝑚𝑠

3 + 
5

8
 κ₅ 𝑎𝑚𝑠

5 = 0.

25

64
𝑎𝑚𝑠

10 κ5
2+ 

15

16
𝑎𝑚𝑠

8 κ5κ3+ (
9

16
κ3

2 −
5

4
 ω²κ5 +

5

4
κ5)𝑎𝑚𝑠

6 +
3

2
κ3(1 − ω²)𝑎𝑚𝑠

4 + (1+ ω4 −

2ω²+4ω² ζ2 −
1

4
q2 ) 𝑎𝑚𝑠

2  +
16

π
 ωσζ 𝑎𝑚𝑠 +

16

π2 σ2 = 0.

β = 
1

2
 tan⁻¹

2ζω 𝑎𝑚𝑠+
4

π σ

 𝑎𝑚𝑠ω²−𝑎𝑚𝑠−
3

4
𝑎𝑚𝑠

3 κ3−
5

8
𝑎𝑚𝑠

5 κ5

. (17)
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Discussion and graphics of obtained results

Fig.5: Branches of trivial solutions and periodic orbits (amplitudes), for 𝜎 = 0, obtained using different analytical approaches: 

harmonic balance method for stiffness characteristics described by a 3rd (HB3) and 5th-degree polynomial (HB5), multiple scale 

method for stiffness characteristics described by a 3rd (MS3) and 5th-degree polynomial (MS5), compared to the numerical solution.
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Discussion and graphics of obtained results

Fig.6: Branches of periodic orbits (amplitudes), for 𝜎 = 0.0000785942, obtained using different analytical approaches: harmonic 

balance method for stiffness characteristics described by a 3rd (HB3) and 5th-degree polynomial (HB5), multiple scale method 

for stiffness characteristics described by a 3rd (MS3) and 5th-degree polynomial (MS5), compared to the numerical solution.
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Fig.7: Branches of periodic orbits (amplitudes), for 𝜎 = 0.009625, obtained using different analytical approaches: 

harmonic balance method for stiffness characteristics described by a 3rd (HB3) and 5th-degree polynomial (HB5), 

multiple scale method for stiffness characteristics described by a 3rd (MS3) and 5th-degree polynomial (MS5), compared 

to experimental results (ES) and the numerical solution (NS).

Discussion and graphics of obtained results
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Continuation of earlier published work

Fig. 8. 2DOF mechanical parametric oscillator

Dimensional equations of motion for 2DOF system

A set of 2nd order coupled ordinary differential equations of the supposed system 

can be written as 

𝑚1 ሷ𝑥 + 𝑐1 ሶ𝑥 + 𝑇1sign ሶ𝑥 + 𝐾 𝑡 𝑥 − 𝑦 + 𝐹𝑠1 𝑥 = 0, 

𝑚2 ሷ𝑦 + 𝑐2 ሶ𝑦 + 𝑇2sign( ሶ𝑦) + 𝐾 𝑡 𝑦 − 𝑥 + 𝐹𝑠2 𝑦 = 0.

(18a)

(20a)

Here we try to use the following model of magnetic springs 

𝐹𝑠𝑖 𝑥𝑖 = 𝑘𝑖1𝑥𝑖 + 𝑘𝑖3𝑥𝑖
3 + ⋯ + 𝑘𝑖𝑛𝑥𝑖

𝑛. (19)

Non-Dimensional equations of motion for 2DOF system

By converting Eqs. (1a) & (1b) into non-dimensional form, we may establish a 

non-dimensional time variable, τ = ωnt, and non-dimensional displacement of 

the system ui =
xi

δ
, where x1, x2 = x, y  and u1, u2 = u, v , using these 

assumptions and we have:

𝑢" + 2𝜁1𝑢′ + 𝜎1sign 𝑢′ + 𝑝 + 𝑞 cos 2𝜔𝜏 𝑢 − 𝑣 + (1 − 𝑝)𝑢

+ 𝜅13𝑢3 + ⋯ + 𝜅1𝑛𝑢𝑛 = 0,

𝑣" + 2𝜁2𝑣′ + 𝜎2sign 𝑣′ + 𝜇 𝑝 + 𝑞 cos 2𝜔𝜏 𝑢 − 𝑣 + 𝜅21𝑣

+ 𝜅23𝑣3 + ⋯ + 𝜅2𝑛𝑣𝑛 = 0.
(20b)

(18b)

Department of Automation, 

Biomechanics and Mechatronics



(b)

Fig. 9: Nonlinear system based on Eq. (3) and its 

approximation using a 3rd and 5th-degree polynomial

𝜁𝑖 =
𝑐𝑖

2𝑚𝑖𝜔𝑛
 ,   𝜎𝑖 =

𝑇𝑖

𝑚𝑖 𝜔𝑛
2 𝛿1

,    𝑝 =
𝑘𝜉+𝑘𝜂

2𝑚1𝜔𝑛
2 ,  𝑞 =

𝑘𝜉−𝑘𝜂

2𝑚1𝜔𝑛
2   , 𝜅𝑖𝑗 =

𝛿1
𝑗−1

𝑚𝑖𝜔𝑛
2 𝑘𝑖𝑗, 𝜇 =

𝑚1

𝑚2
.   

Case 1:

𝑢" + 2𝜁1𝑢′ + 𝜎1sign 𝑢′ + 𝑝 + 𝑞 cos 2𝜔𝜏 𝑢 − 𝑣 + (1 −

𝑝)𝑢 + 𝜅13𝑢3 = 0, 𝑢𝑖
′ > 0

𝑣" + 2𝜁2𝑣′ + 𝜎2sign 𝑣′ + 𝜇 𝑝 + 𝑞 cos 2𝜔𝜏 𝑢 − 𝑣 + 𝜅21𝑣

+ 𝜅23𝑣3 = 0.

Case 2:

𝑢" + 2𝜁1𝑢′ + 𝜎1sign 𝑢′ + 𝑝 + 𝑞 cos 2𝜔𝜏 𝑢 − 𝑣 + (1 − 𝑝)𝑢

+ 𝜅13𝑢3 + 𝜅15𝑢5 = 0,

𝑣" + 2𝜁2𝑣′ + 𝜎2sign 𝑣′ + 𝜇 𝑝 + 𝑞 cos 2𝜔𝜏 𝑢 − 𝑣 + 𝜅21𝑣

+ 𝜅23𝑣3 + 𝜅25𝑣5 = 0.

(21a)

(21b)

(22a)

(22b)

Where,
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𝑓0 𝑢𝑖
′

= 1, if ,   (a)

∈ [-1, 1], if 𝑢𝑖
′ = 0,    (b) 

= -1, if 𝑢𝑖
′ < 0.    (c)

Where, (𝑢1, 𝑢2) = 𝑢, 𝑣 . 
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Parameter Value Unit Parameter Value Unit

FM01 400.96 N d₁ 46.628 m⁻⁴

μ m₂/m₁ kg T₁ 1.5117 N

δ₁ 0.02 m T₂ T₁ N

kξ 4335.9463 N/m c₁ 16.4754 N.s/m

kη 270.9966 N/m c₂ c₁ N.s/m

Table.2: Parameters identified on the real experimental stand

Parameter Value Unit Parameter Value Unit

m₁ 4.55 kg ζ1 46.628 m⁻⁴

m₂ 4.55 kg ζ2 1.5117 -

σ1 0.0134 m σ2 0.0134 -

𝜅11 0.5905 N/m 𝜅21 0.5905 -

𝜅13 2.6736 N/m 𝜅23 2.6736 -

μ 1 - ωn 35.1567 Rad/s

Table.3: The parameters involved in the dimensional and non-dimensional 
systems (18) and (21) for the same masses for n=3



Department of Automation, 

Biomechanics and Mechatronics

Parameter Value Unit Parameter Value Unit

m1 4.55 kg ωn 35.1567 rad/s

m2 8.72 kg ζ1 0.0515 -

µ 1.9165 - ζ2 0.0268 -

σ1 0.0134 - σ2 0.0070 -

𝜅11 0.5905 - 𝜅21 0.3082 -

𝜅13 2.6736 - 𝜅23 1.3954 -

Parameter Value Unit Parameter Value Unit

m1 4.55 kg ωn 42.7057 rad/s

m2 4.55 kg ζ1 0.0424 -

σ1 0.0091 - ζ2 0.0424 -

σ2 0.0091 - µ 1 -

𝜅11 0.7225 - 𝜅21 0.7225 -

𝜅13 0.3430 - 𝜅23 0.3430 -

𝜅15 1.2910 - 𝜅25 1.2910 -

Table. 5: The parameters involved in the system 

(18) and (22) for the same masses for n=5

Table. 4: The parameters involved in the system (18) 

and (21) for the different masses for n=3

Parameter Value Unit Parameter Value Unit

m1 4.55 kg ωn 42.7057 rad/s

m2 8.72 kg ζ1 0.0423 -

σ1 0.0091 - ζ2 0.0221 -

σ2 0.0047 - µ 1.9165 -

𝜅11 0.7224 - 𝜅21 0.3771 -

𝜅13 0.3429 - 𝜅23 0.1790 -

𝜅15 1.2910 - 𝜅25 0.6738 -

Table. 6: The parameters involved in the system 

(18) and (22) for the different masses for n=5



Complex Averaging Method

(23)

(24a)

(24b)
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To derive the amplitude-frequency response, the CA method is employed. Following that, the amplitude 

modulations are averaged throughout a single period of the specified vibration frequency. Let 𝐴1, 𝐴2 ∈ ℂ

2𝐴1 τ 𝑒𝑖ωτ = 𝑢 τ − 𝑖
𝑢′ τ

ω
,  2𝐴2 τ 𝑒𝑖ωτ = 𝑣 τ − 𝑖

𝑣′ τ

ω
.

Using Eq. (23), we can write the expressions for 𝑢 τ , 𝑢′ τ , 𝑢′′ τ , 𝑣 τ , 𝑣′ τ , 𝑎𝑛𝑑 𝑣′′ τ  of the form below

𝑢 = 𝐴1𝑒𝑖ωτ + 𝐴1𝑒−𝑖ωτ,  𝑣 = 𝐴2𝑒𝑖ωτ + 𝐴2𝑒−𝑖ωτ,

𝑢′ = 𝑖ω 𝐴1𝑒𝑖ωτ − 𝐴1𝑒−𝑖ωτ ,  𝑣′ = 𝑖ω 𝐴2𝑒𝑖ωτ − 𝐴2𝑒−𝑖ωτ ,

𝑢′′ = 2𝑖ω𝐴1
′ 𝑒𝑖ωτ − ω2𝑢, 𝑣′′ = 2𝑖ω𝐴2

′ 𝑒𝑖ωτ − ω2𝑣. (24c)

2ζ1ω𝐴1 + 2𝑖ω𝐴1
′ + 𝐴1 − 𝑝𝐴2 + σ1𝑓0 +

𝑞

2
𝐴1 − 𝐴2 + 3κ13𝐴1

2𝐴1 + 10κ15𝐴1
3𝐴1

2 − ω2𝐴1 = 0,

2𝑖ζ2ω𝐴2 + 2𝑖ω𝐴2
′ + κ21𝐴2 − μ𝑝𝐴1 + μ𝑝𝐴2 + σ2𝑔0 +

μ𝑞

2
𝐴2 − 𝐴1 + 3κ23𝐴2

2𝐴2 + 10κ25𝐴2
3𝐴2

2 − ω2𝐴2 = 0

(25)

Substituting the Eq. (24) into Eq. (22), we get the following simplified form: 

Using the polar form 𝐴1 =
1

2
𝑎1𝑒𝑖α1, 𝐴2 =

1

2
𝑎2𝑒𝑖α2 into Eq. (25), and supposing 𝐴1

′ = 𝐴2
′ = 0, for steady case; 



(26a)

(26b)
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5

8
κ15𝑎1

5 +
3

4
κ13𝑎1

3 − 𝑝𝑎2𝑒𝑖 α2−α1 −
𝑞

2
𝑎2𝑒−𝑖 α2+α1 +

𝑞

2
𝑎1𝑒−2𝑖α1 + 2𝑖ζ1ω𝑎1 − ω2𝑎1 + 𝑎1

+
4𝑖σ1

π
= 0,

5

8
κ25𝑎2

5 +
3

4
κ23𝑎2

3 − μ𝑝𝑎1𝑒𝑖 α1−α2 −
𝑞

2
μ𝑎1𝑒−𝑖 α1+α2 +

𝑞

2
μ𝑎2𝑒−2𝑖α2 + 2𝑖ζ2ω𝑎2 − ω2𝑎2

+ μ𝑝𝑎2 + κ21𝑎2 +
4𝑖σ2

π
= 0.

Separating the real and imaginary part, which yields the following system of equations:

(27a)

(27b)

Note that, Eqs. (27a), (27b) obtained from separating the real and imaginary parts of Eqs. (26a), and (26b), 

respectively.

𝑞

2
𝑎1 cos 2α1 −

𝑞

2
𝑎2 cos α2 + α1 +

3

4
κ13𝑎1

3 +
5

8
κ15𝑎1

5 + 1 − ω2 𝑎1 − 𝑝𝑎2 cos α2 − α1 = 0,

2ωζ1𝑎1 − 𝑝𝑎2 sin α2 − α1 −
𝑞

2
𝑎1 sin 2α1 +

𝑞

2
𝑎2 sin α2 + α1 +

4

π
σ1 = 0

𝑞

2
μ𝑎2 cos 2α2 −

𝑞

2
μ𝑎1 cos α1 + α2 +

3

4
κ23𝑎2

3 +
5

8
κ25𝑎2

5 + κ21 + μ𝑝 − ω2 𝑎2 − μ𝑝𝑎1 cos α1 − α2 = 0

2ωζ2𝑎2 − μ𝑝𝑎1 sin α1 − α2 −
𝑞

2
μ𝑎2 sin 2α2 +

𝑞

2
μ𝑎1 sin α1 + α2 +

4

π
σ2 = 0
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(a)

Fig. 10: Branches of periodic orbits (amplitudes), for m1 = 4.55, m2 = 9.10, 𝜇 = 2, 𝜁1 = 0.0423, 𝜁2 = 2 ∗ 𝜁1, 𝜎1 

= 0.0134, 𝜎2 = 2*𝜎1, 𝜅11= 0.7224, 𝜅13 = 0.3429, 𝜅15 = 1.2910, 𝜅21 = 2*𝜅11, 𝜅23 = 2*𝜅13, 𝜅25 = 2*𝜅15 
obtained using CAM for stiffness characteristics described by a 5th-degree nonlinearity, compared to the 

numerical solution.  

(b)
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(a) (b)

Fig. 11: Complex branches of periodic orbits (amplitudes), for σ₁ = 0.0134, σ₂ = 0.0070, obtained using Complex 

Averaging Method for stiffness characteristics described by a 5th-degree polynomial, compared to the numerical 

solution. 
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Fig. 12: Bifurcation plot of the local maxima of 

𝑢 τ  and v τ  as the excitation frequency ω ranges 

from 1.15 to 1.0 (for backward) 1.15 to 1.22 (for 

forward) and initial conditions u(0) =0.72, u'(0) = 

0.64, v(0)=0.8, and v'(0)=0 for fifth-degree 

nonlinearity (same masses).

(a)

(b)

Fig. 13 Bifurcation plot of the local maxima of 𝑢 τ  and 

v τ  as the excitation frequency ω ranges from 1.05 to 

0.98 (for backward) 1.05 to 1.10 (for forward) and initial 

conditions u(0) =0.80, u'(0) = 0.90, v(0) =1.05, and v'(0) 

=0.05 for fifth-degree nonlinearity (different masses).

(a)

(b)
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(a)

(d)

(b)

(c)

Fig. 14: The time-domain plots (top) show steady-state oscillations for 𝑢 τ  and v τ  after an initial transient phase of 500 periods, 

ω = 1.06, and initial conditions are u(0) =0.4, u'(0) = 0, v(0) =-0.45, and v'(0) =0. The phase-space plots (bottom) display 

closed-loop trajectories, indicating periodic, stable motion in antiphase mode.

The same masses of oscillators
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(a) (b)

(c) (d)

Fig. 15: The time-domain plots (top) show near steady-state oscillations for 𝑢 τ  and v τ  after an initial transient phase of 500 

periods, ω = 1.11, and initial conditions are u(0) =0.4, u'(0) = 0, v(0) =-0.45, and v'(0) =0. The phase-space plots (bottom) display 

closed-loop trajectories, and Poincaré section indicates quasi-periodic motion.

(e)

The same masses of oscillators
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(a) (b)

(c) (d)

Fig. 12: The time-domain plots (top) show near steady-state oscillations for 𝑢 τ  and v τ  after an initial transient phase of 500 

periods, ω = 1.14, and initial conditions are u(0) =0.4, u'(0) = 0, v(0) =-0.45, and v'(0) =0. The phase-space plots (bottom) display 

uncertain trajectory, and Poincaré section indicates chaotic regime.

(e)

The same masses of oscillators
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(a)

(d)

(b)

(c)

Fig. 12: The time-domain plots (top) show steady-state oscillations for 𝑢 τ  and v τ  after an initial transient phase of 500 periods, 

ω = 1.04, and initial conditions are u(0) =0.8, u'(0) = 0.9, v(0) =1.05, and v'(0) =0.05. The phase-space plots (bottom) display 

closed-loop trajectories, indicating periodic, stable motion in antiphase mode.

The different masses of oscillators
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(a) (b)

(c) (d)

Fig. 12: The time-domain plots (top) show near steady-state oscillations for 𝑢 τ  and v τ  after an initial transient phase of 500 

periods, ω = 1.045, and initial conditions are u(0) =0.8, u'(0) = 0.9, v(0) =1.05, and v'(0) =0.05. The phase-space plots (bottom) 

display closed-loop trajectories, and Poincaré section indicates quasi-periodic motion.

(e)

The different masses of oscillators
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(a) (b)

(c) (d)

Fig. 12: The time-domain plots (top) show near steady-state oscillations for 𝑢 τ  and v τ  after an initial transient phase of 500 

periods, ω = 1.0544, and initial conditions are u(0) =0.8, u'(0) = 0.9, v(0) =1.05, and v'(0) =0.05. The phase-space plots (bottom) 

display closed-loop trajectories, and Poincaré section indicates quasi-periodic motion.

(e)

The different masses of oscillators
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o Investigated 1DOF and 2DOF mechanical parametric oscillators with dry friction.

o Employed analytical methods:

                (i) Multiple Scale Method (MSM)

                (ii) Harmonic Balance Method (HBM)

                (iii) Complex Averaging Method (CAM)

o Explored isolated branches of periodic orbits under nonlinear stiffness and dry friction.

o Analytical solutions (3rd and 5th-degree polynomial approximations) closely matched numerical and 

experimental results.

o Demonstrated the significance of friction and nonlinearity in system behavior and bifurcation dynamics.

o Validated the effectiveness of proposed models for predicting complex dynamic responses.

o Obtained results support the development of more efficient and controlled mechanical oscillator systems.
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