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Vector Fields and Orbits
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Differential Equations as Inverse Problems
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Governing equation: 6 + %sin@ =0

State space formwith 8 = xand 6 = y
X=y

: g .
y=—7sinx o S : o

i y Vector field and some typical orbits of nonlinear
The velocity vector in state space: [y] = [—_g sin x] pendulum
l
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Non-smooth and Discontinuous Vector Fields

Dynamical systems of the form:

X =f(X Xt

where, vector field fis non-smooth and/or
discontinuous.

R. I. Leine, H. Nijmeijer. Dynamics and Bifurcations of Non-Smooth
Mechanical Systems, Springer Verlag, Berlin, 2004.
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Filippov Systems
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A Filippov system is characterized by ks £ Fx)y = 1o
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Jan Awrejcewicz. Ordinary Differential Equations and Mechanical Systems, Springer, 2014.
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for x > 0,
for x = 0,

for x < 0.
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Surface of Discontinuity/Sliding Surface

The governing equation in non-dimensional form:

d?x
o) -+ 25— +x+ pgsgn(x —vp) —ky(x —vp) + k3(x —v,)3 =0
When x > v,

d?x 5

I +2€—+x+,us—k1(x—vb)+k3(x—vb) =0
When x < v,

d?x dx
Fre) +2€—+x—,us—k1(x—vb)+k3(x—vb)3 =0

What is the vector field when x = v},?
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Partitioning of State space

System given by a finite set of ODEs
x = F;(x, 1) for x€S5;
State space is partitioned into subsets §;.

Each F; is smooth a defines a smooth flow ®;(x, t) in S;.

Ly =SNS5

(Surface of discontinuity/Discontinuity Boundary/

Switching Manifold/Sliding Surface)
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Systems with One Sliding Surface

The single boundary X given by the zero set of a smooth function H:

X ={x: H(x) = 0}

The partition of the state space becomes

. [Fy(z), H(z) >0,
Y7\ Fu(z), H(z) <0,

SO ASNSNSN

For mass-on-moving belt,
H(x) = x — v
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Sliding Region on Discontinuity Surface

Attracting Sliding Repelling Sliding

The orbit slides when the vector fields F; and F, on both sides of X act in opposite directions:

(HyFy). (HyF2) <0

What is the vector field on the sliding region?
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Utkin’s Equivalent Control Method

Utkin proposed the following law for the sliding vector field:

Fi +F2

F =

HxFZ _HxFl

£-%/s

where, [ = —
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Vadim lvanovich Utkin

Component of F; along the normal
of H is set to zero

+
2 p 2

F, + F F, — F
:>Hx<1 2 2 1)=0
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Filippov’s Convex Combination Method

Convex combination of vectors x4, x5, ..., X, E V:ayx; + ayx, + ..+ a,x,
where, «a; ER and apt+a,+ ..+a, =1
For two vectors x; and x,, convex combination is of the form: K = (1 — t)x; + tx,

The vector K lies on the line joining x; and x, forany t € [0, 1]

. o’ Aleksei Fedorovich Filippov

\Y%
o' 1

KO)=(1-1) * V; + t*|V,
-4 -3 -2 .10 1 2 3 4 5 6 7

=1-

-2
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Filippov’s Convex
Combination Method

Filippov defined the sliding vector field as a convex
combination of vector fields on either sides of X:

FE=(1-a)F+aF, 0<a<l1

The value of a is chosen such that F; is tangential to the
discontinuous boundary X:

H,((1—a)F; +aF,) =0

H, F
Hy(F1—F)
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Filippov Method - Applications
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Suppression of disc brake squeal
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Bipin Balaram, B. Santhosh, Jan Awrejcewicz. Frequency entrainment and suppression of stick-slip vibrations in a 3 DoF discontinuous
disc brake model. Journal of Sound and Vibration, 538, 117224, 2022.
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Filippov Method - Applications

Energy harvesting from disc brake vibrations
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Godwin Sani, Bipin Balaram, Grzegorz Kudra, Jan Awrejcewicz. Energy harvesting from friction-induced vibrations in vehicle braking
systems in the presence of rotary unbalances. Energy, 289, 130007, 2024.
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Higher Order Filippov Systems

Higher order sliding can occur in systems with more than one sliding surface

Coupled stick-slip oscillators

Bipin Balaram, B. Santhosh, Jan Awrejcewicz. Synchronisation in Coupled Stick-slip Oscillators. (Under
preparation).
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Higher Order Sliding

The intersection of sliding surfaces X; and X, lead to higher order sliding motion

State space partitioned into 4 regions 54, S,, S3, 54 with vector fields

5, F;, F,, F3, F, respectively.
Ss, Fy 2 ( Fy(2) if Hi(z) >0, Ha(z) >0,
Sl; F1 5= ¢ FQ(I)T if Hl(:ﬂ) > 0 Hg(:ﬂ') < 0,
) FQ,(;I:)T if Hl(:ﬂ') < 0, HQ(:L‘) > 0,
) N | Fu(z),  if Hy(x) <0, Ha(z) <O0;
1
T 5 intersections:

EI_ — 51 N SZ

S, Fy Sy, F ¥T=8nS,

;3 =51 N353

22_ — SZ N 54

gH =21 niz
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Generalised Filippov Method

Sliding vector field on 21

(1-a])F;+a;F, wh = s N
#1)03 T @1 ly WHOIE f1 = Hyx(F3—Fy) Sa, Fa b3
Vector fields on £, £3and £5 can be defined similarly. 51, Fy
. by
Vector field on the higher order sliding region Sy: l \._)_
2
Fsp = y1F1 +y2F; +y3F3 + vy Fy k
S, F, S, F,

Yitvetyst+tva=1

yis are obtained from H,; ,Fs;; = 0 and H, ,Fg; = 0

Bipin Balaram, B. Santhosh, Jan Awrejcewicz. Synchronisation in Coupled Stick-slip Oscillators. (Under preparation).
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Validation of the
Method : M
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J. Awrejcewicz, L. Dzyubak, C. Grebogi. Estimation of Chaotic a i ! . . L
and Regular (Stick—Slip and Slip—Slip) Oscil{ations Exhib'ited by Comparison for vy = 1.5, To1 = 0.5, Ty, = 19.62
Coupled Oscillators with Dry Friction. Nonlinear Dynamics (2005)
42:383-394

Bipin Balaram, B. Santhosh, Jan Awrejcewicz. Synchronisation in
Coupled Stick-slip Oscillators. (Under preparation).
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Validation of the Method
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Bipin Balaram, B. Santhosh, Jan Awrejcewicz. Synchronisation in Coupled Stick-slip Oscillators. (Under
preparation).
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Work Iin Progress

* Higher order sliding orbits of coupled stick-slip oscillators
* Synchronisation properties of coupled stick-slip systems

* Grazing-sliding process in systems with two discontinuity
surfaces

» Effect of higher order sliding on discontiuity induced
bifurcations.
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Dziekuje bardzo!
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