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1. INTRODUCTION

* In this work we introduce a physics-informed neural network approach for
modeling friction, positioning it as an effective method for friction estimation.

* Experimental data from a double torsion pendulum system, featuring
discontinuous dynamics, is utilized for training.

* The results highlight the network's superiority, providing a more precise
representation of stick-slip phases at the contact zone.

* In summary, the presentation includes a case study showcasing the network's
ability to predict dynamic models and estimate planar friction in a double
torsion pendulum system, demonstrating its accuracy and efficiency.
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== 2. MODELING THE INVESTIGATED DYNAMICAL SYSTEM
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== 2. MODELING THE INVESTIGATED DYNAMICAL SYSTEM

The mathematical formulation of the simulated double torsion pendulum model was
established in [35] using the Lagrange method. In the modified and reduced mathematical
model, we introduce the time series P1.m (t) as an input in [rad], representing the real
angular displacement of the lower contact surface (illustrated in red in Fig. 1). Additionally,
we calculate its approximate second time derivative. This leads us to the subsequent
second-order semi-empirical dynamic system governing the rotational motion of the disk

with respect to the ¢, coordinate:
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3. NUMERICAL SIMULATION OF THE MODEL

The four friction models that were simulated are the LuGre, Coulomb and viscous, Dahl

and Coulomb, respectively.

The parameters of four experiments conducted in this experimental part are as follows:
Jy =2.17-10"%, ¢ = 0.19,ky = 0.7, pt, = 0.5, . = 0.12, py = 0.16, 8 = 2,

op = 2 - 1(}4, o] = 102 y 02 = [y, Vg = 103 , and the parameter of smooth
approximation of sign function, ¢ = 103. The initial conditions superposed on the disk
body are zero while forcing of the mass is initiated by the input d? P1.m /dt?. More detail

about the experimental part and its conditions can be found in [35].
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== 3. NUMERICAL SIMULATION OF THE MODEL
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Fig. 2. (a) friction forces versus velocity
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== 3. NUMERICAL SIMULATION OF THE MODEL
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Fig. 3. (b) friction forces and input versus time
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== 4. DATA-DRIVEN FRICTION MODELS

When dealing with translational mechanical or mechatronic systems, such as mass-spring
systems pulled on a friction surface, the friction force and sliding velocity are measured to
enable the estimation of the selected friction model. Conversely, in rotational mechanical
or mechatronic systems, friction torque, and angular velocity are measured. At a constant
velocity, the force or torque input to the system equals the friction force or torque (£ or
Tf ):

Mi = F,, — Fy. 2)

When # is constant, & = O and F,, = F. Similarly,

At constant angular velocity, § = 0and 7, = 75, where F;, and 7, are the applied
J§ = T — 7y . friction and torque, respectively.
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4. DATA-DRIVEN FRICTION MODELS

5.2 There are several standard concepts of data-driven modeling:

System excitation

Time-domain and frequency-domain data
Closed-loop and open-loop system identification
Online and offline identification

Data pre-processing
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== 4. DATA-DRIVEN FRICTION MODELS

4.1 Black-box friction modelling
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4. DATA-DRIVEN FRICTION MODELS

4.2 Black-box friction modeling — physics-informed neural networks (PINN)

PINN can be used to solve ordinary and partial differential equations [69, 70]. For example,
given a first order differential equation below:

dy
E - f(y?tﬂf}()ﬂ t € [U&T] (3)

where yis the dependent variable to be approximated by a neural network, t is time and -y

denote the system parameter.
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= 4. DATA-DRIVEN FRICTION MODELS

4.3 Black-box friction modeling — physics-informed neural networks (PINN)

The solution of the equation (i.e., y) can be approximated by a neural network:

N (t) &~ y(t). The derivative of the network output is computed with respect to its inputs
through automatic differentiation. By virtue of the network differentiation, the original
equation can be encoded into the loss function that is used in updating the weights and

biases of the network.

dN(t)
‘T T dt

— f(N(#),t,7) “)
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4. DATA-DRIVEN FRICTION MODELS

As a result, the new loss function that is used to optimize the neural network is [71]:

Lt =Ls + Leq (5a)

= —Z (y(t:) N(ti))2

-

Loss of the solution
1 m ((dN(t;)
+ =3
m T

Loss of the equation

(Sb)

(N(t:),t m’))?

-

where L, is the loss of the solution, L., is the loss computed based on the system equation
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== 5. THE ROTATIONAL CONTACT SURFACE: TORQUE ESTIMATION
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== 5.1 THE EXPERIMENTAL TEST STAND

1 — the disk Fig. 6.
2 — stop pin
3 - frame

4 - elastic beams
5 — the column

6 — cam forcing the
first end of the spiral
spring attached to the
column

7 — base
8 — microcontroller

9 — ball bearing
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5.2.

DATA ACQUISITION
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Fig. 7. (b) The disk pendulum angular position data K11: 11. March 2025, 12:00, Room 2M334



= 5.3 MODEL ESTIMATION USING NELDER-MEAD SIMPLEX
DIRECT SEARCH ALGORITHM

After application of the Nelder—Mead simplex direct search algorithm, a prediction of the
disk behavior shown in Fig. 8 a (gray line) and also a set of parameters of the friction
model ( 6 ) is found: T; = 0.2328, T, = 0.0928 [Nm], Ty = 0.2188, 1Ty, = 0.0917

[s/rad], & = 92.6465 [s/rad], 5 = 0.0928 [Nm), Jy = 2.17 - 104 [kg m?2]. The results
of the real measurement series and numerical solutions demonstrate quite a good

similarity between the mechanical system’s response and its virtual analogue.

T, 8
) = 1+ —" ) tanhap,,
() =1 lc.bgl( " coshu@g) N

T, 1o = .
[ D] { [TST}TUT] if (1572 < 01
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= 5.4 MODEL ESTIMATION USING PINN ALGORITHM

Load the training and test dataset

E

Create and configure two networks:
Ny =~ @2 and Ny =~ T¢
* Add J, and J; as trainable parameters to N,
* Add the physics of the system to the network loss computation
N - N
Li=hpy =Dy =1 La=Y [¢20) = 02’  Ltotar = L1+ Lo
i=1

* Define the hyperparameters: no. of hidden neurons, no. of
layers, epochs, learning rate etc.

Train the model:
N7 and N»
using Adam optimizer

|

Model validation

4

Save model
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== 5.4 MODEL ESTIMATION USING PINN ALGORITHM

Hyper parameter Value
Number of hidden neurons 30
Hidden layer 2
Weight (w) and biases (b) initialization Random
Activation function a
Learning rate 0.01
Optimizer ADAM
Number of epochs 10,000

dTanh for hidden layers; pure linear for the output layer
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5.4 MODEL ESTIMATION USING PINN ALGORITHM

The loss function used in training /V; is the mean squared error of the predicted disk
pendulum angular rotation, while the loss function for Vs is the computation of the

residual of the system derived from Newton’s second law of rotation:

J2py =T —Tf, (7)

where 7 = J; ¢ is the torque of the column pendulum, 7 is the friction torque being
sought, J; and .J5 are the mass moments of inertia of the column and disk pendulum,

respectively.
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== 6. RESULTS AND DISCUSSION

Fig. 8.
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6. RESULTS AND DISCUSSION
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CONCLUSIONS

A physics-informed neural network is suitable to predict the dynamic model and estimate
planar friction law of a torsion pendulum system. The model was trained using time-
series experimental data, and the results showed that the PINN model was able to
accurately predict the angular rotation of the disk pendulum, while also estimating the
planar friction between the pendulum bodies. The PINN model was able to identify the
frictional loss in the system without using any pre-existing friction models and only relied
on a simplified physics model with two estimated parameters. The approach based on the
PINN algorithm proved to be faster and more accurate than the older Nelder—-Mead
method but requires further refinement due to the need for acquiring a broader
knowledge of the friction model.
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