I. Regulacja nadążna prędkości obrotowej silnika prądu stałego Analiza i optymalizacja układów mechatronicznych i mikrosystemów MT WEEiA (II)

P. Olejnik

Katedra Automatyki, Biomechaniki i Mechatroniki Wydział Mechaniczny Politechniki Łódzkiej

2024 r.

1. Funkcje nieciągłe w modelowaniu układów z tarciem

Funkcje nieciągłe występują w równaniach różniczkowych modelujących efekty nieliniowe, takie jak tarcie suche.

a) teoretyczny model tarcia

$$T_1(v) = \begin{cases} T_{\pm}(v) = \operatorname{sgn}(v)\mu_k(v)N, & v \neq 0\\ T_s \in \{-\mu_0 N, \mu_0 N\}, & v = 0, \end{cases}$$
(1.1)

w którym funkcje s
gn i μ_k zależne od prędkości ruchu względneg
ovsą postaci:

$$\operatorname{sgn}(v) = \begin{cases} 1, & v > 0, \\ -1, & v < 0, \\ 0, & v = 0, \end{cases} \qquad \mu_k(v) = \frac{\mu_0}{1 + \delta|v|}; \tag{1.2}$$

イロト 不得 とくき とくき とうき

b) doświadczalny model tarcia

$$T_{2}(v) = \begin{cases} \frac{T_{+}(v)}{T_{sm}} = 1 - |v| \frac{T_{s} - T_{\min}}{T_{sm} v_{\max}}, & v > 0, \\ \frac{T_{-}(v)}{T_{sm}} = -1 + \frac{a_{1}}{T_{sm}} e^{-\frac{|v| - v_{\min}}{b_{1}}} + \frac{a_{2}}{T_{sm}} e^{-\frac{|v| - v_{\min}}{b_{2}}}, & v < 0, \\ \frac{T_{s}}{T_{sm}} \in \left\{ -1 + \frac{a_{1}}{T_{sm}} e^{\frac{v_{\min}}{b_{1}}} + \frac{a_{2}}{T_{sm}} e^{\frac{v_{\min}}{b_{2}}}, 1 \right\}, & v = 0. \end{cases}$$

- ♦ Charakterystykę $T_2(v)$ wyznaczono na stanowisku laboratoryjnym przeznaczonym do pomiaru sił tarcia statycznego i kinetycznego pomiędzy powierzchniami przylegania pary ciernej stal-poliester [2]
- ◊ Model tarcia suchego przedstawia funkcję zmian współczynnika tarcia lub siły tarcia od prędkości ruchu względnego powierzchni tworzących kontakt cierny.

Rysunek: 1.1 Rozkład sił działających na ciało o masie m w czasie tarcia statycznego (a, b) i kinetycznego (c, d). Stan utwierdzenia powierzchni przylegania zaznaczono obszarem kreskowanym pionowo, stan poślizgu obszarem kreskowanym poziomo

Zdefiniowane we wprowadzeniu postaci nieciągłości można zobrazować, wykreślając funkcje $T_1(v)$ i $T_2(v)$ dane kolejno wzorami (1.1) i (1.3) dla przybliżonej postaci parametrycznej. W tym celu wyprowadza się uproszczone charakterystyki tarcia:

$$T_1(v) = \begin{cases} T_{\pm}(v) = \operatorname{sgn}(v) \frac{1}{1+c|v|}, & v \neq 0, \\ T_s \in \{-1,1\}, & v = 0, \end{cases}$$
(1.4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$T_{2}(v) = \begin{cases} T_{+}(v) = 0.5(1 - cv), & v > 0, \\ T_{-}(v) = -1 + 0.1c \left(e^{-c(11v+3)} + e^{-cv-1} \right), & v < 0, \\ T_{s} \in \left\{ -1 + 0.1ce^{-3c} + e^{-1}, 0.5 \right\}, & v = 0. \end{cases}$$
(1.5)

Rysunek: 1.2 Wykresy funkcji teoretycznego modelu tarcia (a) danego wzorem (1.4) i doświadczalnego (b) danego wzorem (1.5) dla parametru kształtu c = 3. Wykresy wygenerowano za pomocą procedury z wydruku 9 monografii

2. Regulacja nadążna prędkości obrotowej silnika prądu stałego

Dynamika ruchu obrotowego z małymi prędkościami jest silnie związana z drganiami generowanymi w ruchu utwierdzenie-poślizg, pojawiającymi się np. podczas zmiany kierunku obrotów spowodowanej realizacją zadanej funkcji pozycjonowania.

Trudności w modelowaniu i kompensacji efektów nieliniowych występujących na powierzchni kontaktu pomiędzy wałem wirnika i łożyskiem ślizgowym lub na powierzchni gwintowanej pojawiają się w efekcie:

 $\diamond\,$ tarcia Coulomba, wyrażonego maksymalnym momentem siły tarcia statycznego w strefach poślizgu $T_{sm}\,{\rm sgn}\,\dot{\varphi}(t)$ i utwierdzenia $T_{sm}(1-\,{\rm sgn}\,|\dot{\varphi}(t)|)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- ♦ tarcia związanego z krzywą eksponencjalną, pojawiającą się na skutek efektu Stribecka $T_{Stm}(1 \exp(-T_0|\dot{\varphi}(t)|) \operatorname{sgn} \dot{\varphi}(t))$
- \diamond tarcia wiskotycznego $T_{vm}\dot{\varphi}(t)$
- $\diamond\,$ tarcia zależnego od położenia kątowego T_{1m}
 $\sin{(T_2\varphi(t)+T_3)} \sin{|\dot{\varphi}(t)|}.$

Poszczególne zmienne i parametry oznaczają: sg
n $\dot{\varphi}$ – znak wartości prędkości kątowej; φ – położenie kątowe;
 T_{sm} – maksymalny moment siły tarcia statycznego;
 T_{Stm}, T_0 – parametry krzywej eksponencjalnej;
 T_{vm} – współczynnik tarcia wiskotycznego;
 T_{1m}, T_2, T_3 – pozostałe parametry.

イロト 不同 トイヨト イヨト ヨー ろんで

Rysunek: 1.3 Połączenie gwintowe.

W części mechanicznej równanie różniczkowe zwyczajne drugiego rzędu, opisujące dynamikę ruchu obrotowego silnika prądu stałego zapisuje się w postaci

$$J_{m}\ddot{\varphi}(t) + \left(\frac{c_{b}c_{m}}{R_{a}} + T_{vm}\right)\dot{\varphi}(t) - T_{Stm}\left(1 - e^{-T_{0}|\dot{\varphi}(t)|}\right)\operatorname{sgn}\dot{\varphi}(t) + T_{1m}\sin\left(T_{2}\varphi(t) + T_{3}\right)\operatorname{sgn}|\dot{\varphi}(t)| + T_{sm}\left(1 - \operatorname{sgn}|\dot{\varphi}(t)| + \operatorname{sgn}\dot{\varphi}(t)\right) = c_{m}\psi_{m}(t), \quad (1.6)$$

przy czym do pozostałych parametrów modelu zalicza się rezystancję R_a i prąd ψ_m uzwojenia wirnika, masowy moment bezwładności wirnika J_m , stałą momentu c_m i stałą SEM obwodu elektrycznego twornika c_b . Dzieląc równanie (1.6) przez c_m , otrzymuje się

$$J\ddot{\varphi}(t) + B\dot{\varphi}(t) + \tau(t) = \psi(t), \qquad (1.7)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

gdzie:

$$\tau(t) = T_v \dot{\varphi}(t) - T_{St} \left(1 - \exp(-T_0 |\dot{\varphi}(t)|)\right) \operatorname{sgn} \dot{\varphi}(t) +$$
(1.8)
$$T_1 \sin \left(T_2 \varphi(t) + T_3\right) \operatorname{sgn} |\dot{\varphi}(t)| +$$
(1.9)
$$T_s \left(1 - \operatorname{sgn} |\dot{\varphi}(t) + \operatorname{sgn} \dot{\varphi}(t)\right)$$
(1.10)

oznacza przeskalowany moment siły tarcia, parametry $J, B, T_v, T_s, T_1, T_{St}$ są równe odpowiednio $J_m/c_m, c_b/R_a, T_{vm}/c_m, T_{sm}/c_m, T_{1m}/c_m, T_{Stm}/c_m$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Analizowany układ dynamiczny charakteryzuje się parametrami, których wartości są znane w przybliżeniu. Algorytm regulacji nadążnej powinien umożliwiać ich estymację, jak również kompensację niedokładności opisu matematycznego.

Metoda kompensacji oparta na funkcji powierzchni ślizgu

Zadanie kontroli polega na zaprojektowaniu kompensatora adaptacyjnego umożliwiającego zmianę prędkości obrotowej silnika zgodnie z zadaną funkcją $\varphi_d(t)$, patrz pozycje lit. [1, 3].

Niech uchyb regulacji ei funkcja pomocnicza ε będą postaci

$$e(t) = \varphi(t) - \varphi_d(t), \quad \varepsilon(t) = \dot{\varphi}_d(t) - \lambda e(t), \quad (1.11)$$

gdzie: φ i $\dot{\varphi}$ oznaczają odpowiednio położenie i prędkość kątową wirnika; $\lambda > 0$ jest wartością stałą; indeks d wyróżnia pożądane funkcje odpowiedzi układu regulacji.

Zależność na tzw. funkcję powierzchni ślizgu jest następująca

$$r(t) = \dot{\varphi}(t) - \varepsilon(t) = 0. \qquad (1.12)$$

Przekształcając równanie (1.7) z wykorzystaniem definicji funkcji powierzchni ślizgu r(t) zapisuje się następujące prawo sterowania

$$\psi(t) = \hat{J}\dot{\varepsilon}(t) + \hat{D}\varepsilon(t) - \hat{T}_{St} \left(1 - e^{-\hat{T}_0|\dot{\varphi}(t)|}\right) \operatorname{sgn} \dot{\varphi}(t) + \hat{T}_s \operatorname{sgn} \dot{\varphi}(t) + \hat{T}_s \left(1 - \operatorname{sgn} |\dot{\varphi}(t)|\right) u_s(t) - u_b(t), \qquad (1.13)$$

gdzie: $u_b(t)$ oznacza funkcję ograniczającą z góry momenty sił tarcia związane z efektami nieliniowymi, tj. efekt Stribecka i tarcie zależne od położenia kątowego wirnika, $u_s(t) = 1 - \operatorname{sgn} |r(t)|$ jest funkcją określoną podczas utwierdzenia przy r(t) = 0 i związaną z definicją funkcji powierzchni ślizgu wprowadzoną we wzorze (1.12), $\hat{D} = \hat{B} + \hat{T}_v$, symbol^wyróżnia parametr estymowany.

• 中国 (周国) (国际) (国际) (国际)

Funkcję $\psi(t)$ daną wzorem (1.13) podstawia się do równania (1.6) w celu kompensacji liniowych sił tarcia Coulomba i tarcia wiskotycznego [?]. Tym sposobem jednak nie można skompensować nieliniowych sił związanych z tarciem zależnym od położenia kątowego wirnika i efektem Stribecka. W tym celu wyprowadza się kompensator estymujący parametr $\hat{\rho}$ funkcji $u_b(t)$ ograniczającej z góry wartości siły tarcia [?] związanej z efektami nieliniowymi

$$u_b(t) = k_D r(t) + \hat{\rho} k_T \operatorname{tgh}(r(t)(a+bt)), \qquad (1.14)$$

We wzorze (1.14) stałe a, b, k_D, k_T są dodatnie, przy czym $k_T > 1$. Jeśli parametr $\hat{\rho}$ jest poszukiwaną estymacją, to we wzorze na prawo sterowania (1.13) wartość $u_b(t)|_{r(t)=\lambda e}$ spełnia rolę wzmocnienia proporcjonalnego gwarantującego odporną kompensację sił nieliniowych. Prawo sterowania (1.13) zapewnia, że moment siły związany z kompensacją efektów nieliniowych będzie większy od maksymalnej wartości momentu sił pochodzących od tarcia statycznego.

Opracowany algorytm przebiega dwuetapowo:

1. Kompensator znany w literaturze [Slotine i Li, 1987]

$$\psi(t) = \hat{J}\dot{\varepsilon}(t) + \hat{D}\varepsilon(t) - \hat{T}_{St} \left(1 - e^{-\hat{T}_0|\dot{\varphi}(t)|} \right) \operatorname{sgn} \dot{\varphi}(t) + \hat{T}_s \operatorname{sgn} \dot{\varphi}(t) + \hat{T}_s \left(1 - \operatorname{sgn} |\dot{\varphi}(t)| \right) u_s(t) - u_b(t) , \qquad (1.15)$$

gdzie: $u_b(t)$ oznacza funkcję ograniczającą z góry momenty sił tarcia związane z efektem Stribecka i tarciem zależnym od położenia kątowego wirnika, $u_s(t) = 1 - \operatorname{sgn} |r(t)|$ jest funkcją określoną podczas utwierdzenia przy $r(t) = \dot{\varphi}(t) - (\dot{\varphi}_d(t) - \lambda(\varphi(t) - \varphi_d(t))) = 0$, $u_b(t) = k_D r(t) + \hat{\rho} k_T \operatorname{tgh}(r(t)(a + bt))$, symbol ^ wyróżnia parametr estymowany.

イロト イクト イヨト イヨト ヨー シへの

2. <u>Propozycja modyfikacji</u>. Modelując taki układ mechatroniczny należy rozszerzyć opis matematyczny o równanie dynamiki części elektrycznej. Zestaw równań różniczkowych przyjmuje wtedy następującą postać uzupełnioną

$$J\ddot{\varphi}_f(t) + B\dot{\varphi}_f(t) + \tau_f(t) = \psi_f(t), \qquad (1.16)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$L_a \dot{\psi}_f(t) + R_a \psi_f(t) + c_b \dot{\varphi}_f(t) = v_f(t) , \qquad (1.17)$$

w której: indeks f wyróżnia zmienne stanu trójwymiarowego układu dynamicznego (uzupełnionego), modelującego silnik prądu stałego, L_a jest indukcyjnością całego obwodu twornika, $v_f(t)$ jest funkcją zmian w czasie sygnału napięciowego, wymaganego do realizacji zadania regulacji stałowartościowej lub nadążnej położenia kątowego lub prędkości obrotowej silnika.

$$v_f(t) = L_a \dot{\psi}(t) + R_a \psi(t) + c_b \dot{\varphi}(t) + d(t) .$$
 (1.18)

Przy założeniu, że $\psi(t)$ gwarantuje odporną regulację nadążną w uproszczonym modelu dynamicznym, opisanym równaniem (1.7), dynamiczną rozbieżność zmiennymi stanu układów (1.17) i (1.18) skompensuje pewna funkcja d(t) – człon proporcjonalno-różniczkujący.

Podstawienie zależności na v_f danej wzorem (1.18) do równania (1.17) prowadzi do wyrugowania wyrazów zależnych od czasu. Stosując w równaniu (1.18) poniższą definicję regulatora

$$d(t) = k_1(\varphi_d(t) - \varphi_f(t)) + k_2(\dot{\varphi}_d(t) - \dot{\varphi}_f(t)), \qquad (1.19)$$

イロト イロト イヨト イヨト ヨー のくで

otrzymuje się przy uwzględnieniu zależności (1.17) równanie równowagi dynamicznej w części elektrycznej obiektu regulacji, jak następuje

$$L_{a}\left(\dot{\psi}_{f}(t) - \dot{\psi}(t)\right) + R_{a}\left(\psi_{f}(t) - \psi(t)\right) + c_{b}\left(\dot{\varphi}_{f}(t) - \dot{\varphi}(t)\right) = k_{1}\left(\varphi_{d}(t) - \varphi_{f}(t)\right) + k_{2}\left(\dot{\varphi}_{d}(t) - \dot{\varphi}_{f}(t)\right). \quad (1.20)$$

Symulacja numeryczna

Rysunek: 1.4 Schemat blokowy układu regulacji adaptacyjnej

Rysunek: 1.5 (a, d) Zadana trajektoria prędkości kątowej $\dot{\varphi}_d(t)$ (linia przerywana) i odpowiadające jej odpowiedzi wyjściowe $\dot{\varphi}(t)$ (linia ciągła) obiektu regulacji

Rysunek: 1.6 (b, e) Zadana trajektoria prędkości kątowej $\dot{\varphi}_d(t)$ (linia przerywana) i odpowiadające jej odpowiedzi wyjściowe $\dot{\varphi}(t)$ (linia ciągła) obiektu regulacji

Rysunek: 1.7 (c, f) Zadana trajektoria prędkości kątowej $\dot{\varphi}_d(t)$ (linia przerywana) i odpowiadające jej odpowiedzi wyjściowe $\dot{\varphi}(t)$ (linia ciągła) obiektu regulacji

Podsumowanie

Uzyskanie pożądanej dokładności symulacji numerycznych wiernie odwzorowujących dynamikę obiektów rzeczywistych, wymaga stosowania pewnych przybliżeń, rozwiązań optymalizacyjnych i ukierunkowanych metod matematycznych.

イロト イポト イヨト イヨト

Podsumowanie

Uzyskanie pożądanej dokładności symulacji numerycznych wiernie odwzorowujących dynamikę obiektów rzeczywistych, wymaga stosowania pewnych przybliżeń, rozwiązań optymalizacyjnych i ukierunkowanych metod matematycznych.

Wyjaśniono mechanizmy pojawiania się nieciągłości w układach mechanicznych o jednym, dwóch i wielu stopniach swobody.

・ロト ・ 一 ト ・ ヨト ・ ヨト ・

Podsumowanie

Uzyskanie pożądanej dokładności symulacji numerycznych wiernie odwzorowujących dynamikę obiektów rzeczywistych, wymaga stosowania pewnych przybliżeń, rozwiązań optymalizacyjnych i ukierunkowanych metod matematycznych.

Wyjaśniono mechanizmy pojawiania się nieciągłości w układach mechanicznych o jednym, dwóch i wielu stopniach swobody.

Wyprowadzono metody matematyczne, za pomocą których zapisano kod oryginalnych procedur generujących wyniki symulacji numerycznych.

Literatura I

Olejnik P., Awrejcewicz J.

Low-speed voltage-input tracking control of a dc-motor numerically modelled by a dynamical system with stick-slip friction. *Differential Equations and Dynamical Systems 21*, 1 (2013), 3–13.

- OLEJNIK P., AWREJCEWICZ J., FEČKAN M. Modeling, Analysis and Control of Dynamical Systems: With Friction and Impacts.
 WORLD SCIENTIFIC, 2017.

Song G., Cai L., Wang Y., Longman R. W.

A sliding-mode based smooth adaptive robust controller for friction compensation.

Int. J. Robust Nonlinear Control 8, 8 (July 1998), 725–739.

Dziękuję za uwagę!

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ⊙