

Lodz University of Technology

Scientific Lectures 2024

POWER GENERATION THROUGH VIBRATION-BASED ENERGY HARVESTERS

a) Hybrid piezo-electromagnetic energy harvesterb) Electromagnetic energy harvesters' array

Rajarathinam Murugesan

ADVISOR

Prof. Jan Awrejcewicz

Department of Automation,

Biomechanics and Mechatronics

Outline

- Introduction
- Literature Surveys
- Motivation and Objectives
- Investigation of hybrid harvester
- Demonstration of hybrid power application
- Investigation of an array of electromagnetic energy harvester
- Conclusion

Introduction and Literature Survey

28.05.2024

Energy Harvesting

What is energy harvesting?

Applications of energy harvesting

Almost 90% of WSNs applications cannot be enabled without Energy Harvesting technologies that allow self-powering features- F Cottone

	0		
20.05.2024		Power generation through vibration-	
28.05.2024		based energy harvesters	

Vibration Energy Harvesters - Transduction Techniques

Electromagnetic: Any change in the magnetic field of a solenoid will induce an emf in the solenoid.

Magnetostrictive: Generates power because of change in magnetization due to applied stress.

Why Vibration?: Commonly available in structural and industrial environments.

Electrostatic: Generates power when the transducer moves against an electrical field.

Piezoelectric: Generates power when mechanical stress is applied to the piezoelectric elements through external vibrations.

6

Literature Survey

28.05.2024

Broadband energy harvesting

Increasing the operating bandwidth so that fairly large power output is obtained over a range of frequencies.

Motivation and Objectives

Motivation :

To scavenge a reasonable amount of power over a broad frequency range using:

(i) Hybrid transduction mechanism

(ii) Electromagnetic energy harvesters' array.

Objectives:

- Analysis of the hybrid energy harvester under harmonic and random excitations and comparing with the standalones.
- Verification of the results through experiments.
- Application of the generated power for wireless temperature and acceleration sensors.
- Investigation of an array of electromagnetic energy harvesters.

28.05.2024

I.Investigation of hybrid harvester under harmonic excitation

28.05.2024

Proposed Hybrid Piezo-Electromagnetic Energy Harvester

Harvesting energy using both piezoelectric and electromagnetic techniques in a single device.

Equivalent Lumped Mass Model

_			
• 🔳		161	
• T. I.			44
-			

Mathematical Model-Harmonic analysis

Piezo-electro-magneto-mechanical model of the hybrid harvester is derived using Newton's second law of motion, piezoelectric constitutive law and Faraday's law of induction, $m_1\ddot{y}_{1r}(t) + c_1\dot{y}_{1r}(t) - c_2[\dot{y}_{2r}(t) - \dot{y}_{1r}(t)] + k_1y_{1r}(t) - k_2[y_{2r}(t) - y_{1r}(t)] + \theta_pV_p(t) = -\lambda m_1\ddot{y}_g(t)$ $m_2\ddot{y}_{2r}(t) + c_2[\dot{y}_{2r}(t) - \dot{y}_{1r}(t)] + k_2[y_{2r}(t) - y_{1r}(t)] = -m_2\ddot{y}_g(t)$

$$-\theta_p y_{1r}(t) + C_p \dot{V}_p(t) + \frac{V_p(t)}{\lambda R_p} = 0$$

 $V_{em}(t) + \theta_{em} \dot{y}_{2r}(t) = 0$

Normalizing the equations w. r. t resonant frequency of the primary system,

$$\begin{bmatrix} -\Omega^{2} + 2\zeta_{1}i\Omega + 2\mu\beta\zeta_{2}i\Omega + \mu\beta^{2} + 1\end{bmatrix}Y_{1r} - [2\mu\beta\zeta_{2}i\Omega + \mu\beta^{2}]Y_{2r} + \left\lfloor\frac{\theta_{p}}{k_{1}}\right\rfloor V_{p} = \lambda\Omega^{2}Y_{g}$$

$$-[2\beta\zeta_{2}i\Omega + \beta^{2}]Y_{1r} + [-\Omega^{2} + 2\beta\zeta_{2}i\Omega + \beta^{2}]Y_{2r} = \Omega^{2}Y_{g}$$

$$-\left[\frac{\theta_{p}}{C_{p}}\alpha i\Omega\right]Y_{1r} + [i\alpha\Omega + 1]V_{p} = 0$$

$$V_{em} = -\theta_{em}\omega_{1}i\Omega Y_{2r}$$

$$\begin{bmatrix}\Omega = \frac{\omega}{\omega_{1}}; \alpha = \lambda\omega_{1}C_{p}R_{p}\\\\\beta = \frac{\omega_{2}}{\omega_{1}}; \mu = \frac{m_{2}}{m_{1}}; \kappa^{2} = \frac{\theta_{p}^{2}}{k_{1}C_{p}}\end{bmatrix}$$

Power output,

$$P_{PHH} = \frac{|V_p / \sqrt{2}|^2}{R_p}; \qquad P_{EHH} = \left|\frac{V_{em} / \sqrt{2}}{R_{em} + Rc}\right|^2 R_{em} \qquad \text{Total Power} \qquad P_{HH} = P_{PHH} + P_{EHH}$$
28.05.2024 Power generation through vibration-based energy harvesters 12

Experimental setup

Fig: Photograph

Table: Parameters and their values

Parameter	Value	Parameter	Value	Parameter	Value	Parameter	Value	
L	160 mm	ρ	7800 kg/m³	C _p	177.07 nF	B _m	1.1 T	
b	32 mm	t _p	0.3 mm	R _p	50 kΩ	R _{em}	60 Ω	
t _b	0.4 mm	C ^E	15.857 Gpa	m _t	13.19 gm	ζ_1	0.0238	
Е	210 Gpa	d ₃₁	170 pC/N	m _m	17.61 gm	ζ_2	0.0044	

Harmonic analysis

Frequency sweep
1-20Hz (Re 0.05Hz)
Resistance sweep
PE:10-200kΩ, EM10-200Ω
Base excitation
1mm

28.05.2024

Results: Harmonic analysis: contd...

The power harvested by the hybrid harvester exceeds the power obtained by standalone alternatives over a large region between the two resonating frequencies. This makes the hybrid harvester generate broadband power which is unachievable for standalone devices.

Results: Harmonic analysis: Parametric study

Figs: Power curves in hybrid energy harvester with different parameter values.

Table: Response of the hybrid harvester with respect to increase in parameters value

	First R	esonating Fre	quency	Second	Resonating Fre	quency	Total Band	
Parameter	Band Width	Power	f_1 Shift	Band Width	Power	f_2 Shift	Width	
α	No	No	No	Increase	Max	Slightly	Slightly	
	change	change	change		at $\alpha = 1$	right	increase	
κ^2	Slightly	Slightly	No	Increase	Increase	Right	Increase	
	decrease	decrease	change	increase	increase	MgH	Increase	
m	Slightly	Slightly	No	Decrease	Decrease	Loft	Decrease	
m_t	increase	increase	change	Decrease	Decrease	Leit	Decrease	
m _m	Decrease	Decrease	Left	No change	Decrease	Left	Increase	
<i>k</i> ₁	No significant	Slightly decrease	Slightly right	Increase	Increase	Right	Increase	
k	Slightly	Increase	Right	No	No	Right	Slightly	
~~2	decrease	increase	NgIIt	change	change	Ngin	decrease	

28.05.2024

Investigation of hybrid harvester under random excitation

28.05.2024

Mathematical Model-Random analysis

EOM:

 $m_{1}\ddot{y}_{1r}(t) + c_{1}\dot{y}_{1r}(t) - c_{2}[\dot{y}_{2r}(t) - \dot{y}_{1r}(t)] + k_{1}y_{1r}(t) - k_{2}[y_{2r}(t) - y_{1r}(t)] + \theta_{p}V_{p}(t) = -\lambda m_{1}\ddot{y}_{g}(t)$ $m_{2}\ddot{y}_{2r}(t) + c_{2}[\dot{y}_{2r}(t) - \dot{y}_{1r}(t)] + k_{2}[y_{2r}(t) - y_{1r}(t)] = -m_{2}\ddot{y}_{g}(t)$ $-\theta_{p}y_{1r}(t) + C_{p}\dot{V}_{p}(t) + \frac{V_{p}(t)}{\lambda R_{p}} = 0$ Gaussian

 $V_{em}(t) + \theta_{em} \dot{y}_{2r}(t) = 0$

Power output:

$$P_{PHH}(t) = \frac{(V_p)^2}{R_p}; P_{EHH}(t) = \left[\frac{-\theta_{em}V_{em}}{[R_{em} + R_c]}\right]^2 R_{em} \quad \text{Total} \\ \text{Power} \quad P_{HH}(t) = P_{PHH}(t) + P_{EHH}(t)$$

Based on the acceleration random input, the expected value arrived at

$$E[u_{j}(t)^{2}] = \frac{E[u_{j}(t)]^{2}}{c} = \int_{1}^{\infty} \frac{1}{\left[\Delta(i\Omega)\right]^{2}} \frac{\left[H_{j}(\Omega)\right]^{2}}{\Omega^{4}} d\Omega$$

 $u_j(t) \longrightarrow y_{1r}(t), y_{2r}(t), V_p(t), V_{em}(t)$

Solved by using classical Cramer's formula

Expected Power:

Random analysis

$$E[P_{HH}] = \frac{E[V_p^2]}{R_p} + \frac{E[V_{em}^2]}{[R_{em} + Rc]^2} R_{em}$$
Base excitation:
Band limited
GWN
Base excitation:
15-20 Hz, 2-10 Hz, 10-15 Hz,
2-20 Hz, 3.8-12.6Hz
Band - σ_{acc}
is different
28.05.2024
Base excitation:
Base excitation:
Base excitation:
Band limited
GWN
Base excitation:
Base excitation:
Base excitation:
Base excitation:
Base excitation:
Band limited
GWN
Base excitation:
Band limited
Base excitation:
Base excitation:
Band limited
Base excitation:
Band limited
Base excitation:
Base excitation:
Band limited
Base excitation:
Band limited
Base excitation:
Base excitation:
Band limited
Base excitation:
Band limited
Base excitation:
Band limited
Base excitation:
Base

Results: Random analysis

base motion, corresponding (b) PDF with comparison of simulations (Th:Simulations)

PH and HH currents.

28.05.2024

Results: Random analysis: contd...

Fig: Average power versus standard deviation of input acceleration for different frequency bands Table : Average power comparison of harvesters

Frequency	рц			НН			нн	
Range	РН	EH	PHH	EHH	Total	PH+EH		
2-5 Hz	l.	Ш	П	IV	V	Low	High	
5-10 Hz	L.	Ш	П	IV	V	Low	High	
10-15 Hz	V		Ш		IV	High	Low	
15-20 Hz	Ш	II	IV		V	Low	High	
2-10 Hz	L.	Ш	П	IV	V	Low	High	
10-20 Hz	V	I	Ш	Π	IV	High	Low	
2-20 Hz	П	- 111	I	IV	V	Low	High	
3.8-12.6 Hz	П	Ш	I	IV	V	Low	High	

■ln the frequency bands 2–10Hz, the EM between perform better harvesters compared to PE harvesters. ■ln the frequency bands between 10-20Hz, the PE harvester perform better than

EM harvester performs better thanEM harvesters.HH performs better between the first and second resonating

frequencies (3.8–12.6Hz) and in the wide bandwidth (2–20Hz).

28.05.2024

Results: Random analysis: Parametric study

Figs: Variation of HH normalized mean power as a function of non-dimensional time constant, α and (a) mass ratio, μ (b) frequency ratio, β (c) damping ratio of the PHH, ζ_1 (d) damping ratio of the EHH, ζ_2 (e) non-dimensional electromechanical coupling coefficient .[Parameters other than the one being studied are considered as μ =2.6318, β =0.1643, ζ_1 =0.0238, ζ_2s =0.0613, ζ_em =0.0569, κ_p^2 =0.016.]

28.05.2024

Demonstration of hybrid power application

28.05.2024

Demonstration :

(a) Wireless temperature sensor powered from HH.

(b) Wireless accelerometer sensor powered from HH.

Figs. Experimental demonstration of wireless sensors on a beam powered through hybrid harvester

(a) wireless temperature sensor, (b) wireless accelerometer sensor; recorded (c) temperature, (d) and (e) accelerations.

The wireless accelerometer is powered using HH for realizing the self-energized structural health monitoring

|--|

Demonstration: II&III

LEDs

Fig: Experimental demonstration of light-emitting diodes powered through hybrid harvester.

The amount of power extracted from HH is adequate enough to power the wireless sensors and LEDs.

Figs: Experimental demonstration of wireless sensors on a bus powered through hybrid harvester (a) setup of wireless sensor, (b) recorded acceleration, (c) recorded temperature.

28.05.2024

Demonstration: Video

28.05.2024

Summary of the first part

- This study reports experimental and theoretical studies of a coupled piezoelectromagnetic hybrid energy harvester.
- Simplified analytical model provides a good approximation to the experimental results.
- Hybrid harvester operates over a broad range of frequencies, compared to the narrow operating frequency range in standalone devices.
- Simultaneous production of high current and the high voltage is obtained due to the coupling of piezoelectric and electromagnetic transduction techniques.
- Parameters are discussed with the perspective of optimizing the magnitude and bandwidth of the harvested power.

II. Investigation of an array of electromagnetic energy harvester

28.05.2024

Electromagnetic energy harvester array

Physical Model

	_	_	
			л
			4

Harvester Model : contd...

28.05.2024

Mathematical Model

Equations of motion of the *n*-pendulum array

$$\begin{split} m_{j}l_{j}^{2}\ddot{\theta}_{j}(t) + c_{j}l_{j}^{2}\dot{\theta}_{j}(t) + \bar{m}_{j}gl_{j}\sin\theta_{j}(t) + k_{j-1}a^{2}[\sin\theta_{j}(t) - \sin\theta_{j-1}(t)]\cos\theta_{j}(t) \\ + k_{j}a^{2}[\sin\theta_{j}(t) - \sin\theta_{j+1}(t)]\cos\theta_{j}(t) = -m_{j}l_{j}\ddot{x}_{g}(t)\cos\theta_{j}(t); \\ \left\{ \begin{array}{l} j = 1, 2, 3...n, \quad \theta_{j-1}(t) = 0; \ at \ j = 1, \quad \theta_{j+1}(t) = 0; \ at \ j = n \end{array} \right. \\ M_{j}L_{j}^{2}\ddot{\Theta}_{j}(t) + C_{j}L_{j}^{2}\dot{\Theta}_{j}(t) + \bar{M}_{j}gL_{j}\sin\Theta_{j}(t) + K_{j-1}b^{2}[\sin\Theta_{j}(t) - \sin\Theta_{j-1}(t)]\cos\Theta_{j}(t) \\ + K_{j}b^{2}[\sin\Theta_{j}(t) - \sin\Theta_{j+1}(t)]\cos\Theta_{j}(t) = -M_{j}L_{j}\ddot{x}_{g}(t)\cos\Theta_{j}(t); \\ \left\{ \begin{array}{l} j = 1, 2, 3...n, \quad \Theta_{j-1}(t) = 0; \ at \ j = 1, \quad \Theta_{j+1}(t) = 0; \ at \ j = n \end{array} \right. \end{split}$$

Nondimensional form

$$\mu_{j}\alpha_{j}^{2}\ddot{\theta}_{j}' + 2\zeta_{j}\mu_{j}\alpha_{j}^{2}\Omega_{j}\dot{\theta}_{j}' + \bar{\mu}_{j}\alpha_{j}\sin\theta_{j}' + \beta_{j-1}[\sin\theta_{j}' - \sin\theta_{j-1}']\cos\theta_{j}' + \beta_{j}[\sin\theta_{j}' - \sin\theta_{j+1}']\cos\theta_{j}' = \mu_{j}\alpha_{j}\Omega^{2}\lambda\sin(\Omega\tau)\cos\theta_{j}'; \left\{ \theta_{j-1}' = 0; \ at \ j = 1, \quad \theta_{j+1}' = 0; \ at \ j = n \right\}$$

$$\begin{aligned} \hat{\mu}_{j}\hat{\alpha}_{j}^{2}\ddot{\Theta}_{j}' + 2\hat{\zeta}_{j}\hat{\mu}_{j}\hat{\alpha}_{j}^{2}\hat{\Omega}_{j}\dot{\Theta}_{j}' + \hat{\mu}_{j}\hat{\alpha}_{j}\sin\Theta_{j}' + \hat{\beta}_{j-1}(\sin\Theta_{j}' - \sin\Theta_{j-1}')\cos\Theta_{j}' \\ + \hat{\beta}_{j}(\sin\Theta_{j}' - \sin\Theta_{j+1}')\cos\Theta_{j}' = \hat{\mu}_{j}\hat{\alpha}_{j}\Omega^{2}\lambda\sin(\Omega\tau)\cos\Theta_{j}'; \\ \left\{ \begin{array}{l} \Theta_{j-1}' = 0; \ at \ j = 1, \\ \end{array} \right. \begin{array}{l} \Theta_{j+1}' = 0; \ at \ j = n \end{aligned}$$

Mathematical Model : contd...

Nondimensional parameters :

$$\begin{split} \mu_{j} = & \frac{m_{j}}{m_{1}}; \ \hat{\mu}_{j} = \frac{M_{j}}{m_{1}}; \ \bar{\mu}_{j} = \frac{\bar{m}_{j}}{\bar{m}_{1}}; \ \hat{\mu}_{j} = \frac{\bar{M}_{j}}{\bar{m}_{1}}; \ \alpha_{j} = \frac{l_{j}}{l_{1}}; \ \hat{\alpha}_{j} = \frac{L_{j}}{l_{1}}; \\ \zeta_{j} = & \frac{c_{j}}{2m_{1}\omega_{1}}; \ \hat{\zeta}_{j} = \frac{C_{j}}{2m_{1}\omega_{1}}; \ \beta_{j} = \frac{k_{j}a^{2}}{m_{1}l_{1}^{2}\omega_{1}^{2}}; \ \hat{\beta}_{j} = \frac{K_{j}b^{2}}{m_{1}l_{1}^{2}\omega_{1}^{2}}; \ \lambda = \frac{X_{g}}{l_{1}}; \ \Omega = \frac{\omega}{\omega_{1}} \end{split}$$

Total Power

$$|P_t| = \frac{1}{2} \sum_{j=1}^{4} \Omega^2 \zeta_{emj} (\hat{\alpha}_j \Theta_j - \alpha_j \theta_j)^2$$

Table: List of harvester configurations with different

coupling combinations

		UC	UC SaMH		
SaMH	C	&UG	C&UG SaMH		
	C	2&G	CG SaMH		
		UC	UC SaSH		
SaSH	C	&UG	C&UG SaSH		
	C	&G	C&G SaSH		
		UC MH	UC MSH		
	UC SH	C&UG MH	UC SH with C&UG MH		
		CG MH	UC SH with C&G MH		
		UC MH	C&UG SH with UC MH		
MSH	C&UG SH	C&UG MH	C&UG MSH		
		CG MH	C&UG SH with C&G MH		
		UC MH	C&G SH with UC MH		
	C&G SH	C&UG MH	C&G SH with C&UG MH		
		CG MH	C&G MSH		

Coupled and ungrounded (C&UG)

 $eta_0,eta_n,\hateta_0,\hateta_n=0$

Uncoupled and ungrounded (UC)

 $eta_q, \hateta_q = 0$

28.05.2024

Linear dynamics $\lambda = 0.01$

Power @ 2×10^{-4} , the bandwidth of the UC MSH increases by 45.57% compared to UC SaMH and by 162.07% compared to UC SaSH.

Figs : Frequency response of the uncoupled harvesters' normalized power [at λ = 0.01].

0			5.
×		41	
<u> </u>	0.0		

Results: contd...

Figs : Comparisons of the total harvested normalized power of C&G SH with MH CC across various positions of the harvesters. [Note: only six of them are shown for visual clarity]

Each harvester in the harvesting array is designed to have a different resonant frequency, so their performance varies depending on their location when they are coupled.

Spring with equal stiffness \rightarrow n!/2 possible combinations

	1234	1423	1342	2314	2143	2341	3214	3142	3421	4213	4312	4231
--	------	------	------	------	------	------	------	------	------	------	------	------

Results: contd...

Table : Comparisons of relative power density

	-														r
C ↓ Co	oupling mbinat	ions					Relativ	ve Powe	er Dens	ity (%))				
	Harv Posit	esters	1234	1423	1342	2314	2143	2341	3214	3142	3421	4213	4312	4231	$M D_{\rm H} = (P$
	U	C	100												
MH	C&	UG	100.31	101.33	100.87	101.56	101.16	101.08	101.19	101.77	100.52	100.99	100.74	100.92	PD _H -power
	C	kG	109.84	111.82	112.75	108.87	109.36	112.97	107.10	110.00	110.96	106.89	108.02	110.47	respective h
	U	C						66	.35						arrav.
SH	C&UG		66.40	66.56	66.48	66.58	66.52	66.51	66.53	66.62	66.43	66.50	66.46	66.49	PD
	C&G		69.25	69.64	69.88	69.01	69.18	69.91	68.65	69.28	69.51	68.62	68.88	69.34	
		UC MH						126	6.59						the uncoup
	UC SH	C&UG MH	126.37	126.34	126.25	126.57	126.47	126.17	126.30	126.62	126.27	126.38	126.52	126.51	CRC SOMH
		C&G MH	139.22	140.48	141.84	137.30	137.83	141.85	135.54	138.19	140.11	135.50	136.90	139.58	C&G MH wit
	C&UG SH	UC MH	127.12	129.98	128.80	129.88	128.75	129.05	128.78	130.47	127.99	129.18	128.44	128.97	give the model density at
MSH		C&UG MH	126.79	127.55	127.19	127.90	127.52	127.31	127.52	128.00	126.92	127.33	127.22	127.32	position of
		C&G MH	139.63	141.88	143.15	138.09	138.76	143.38	136.03	139.42	140.93	135.87	137.30	140.32	combination
		UC MH	127.63	130.28	130.57	129.90	129.07	129.85	128.40	130.90	129.13	128.86	128.28	129.77	the harvest
	C&G SH	C&UG MH	127.02	127.35	127.05	127.99	127.61	127.05	127.61	128.00	127.04	127.47	127.39	127.40	3142.
	л	C&G MH	140.86	142.96	144.44	139.05	139.80	144.59	136.82	140.41	142.21	136.65	138.27	141.47	

 $RPD_{H} = \left(\frac{PD_{H}}{PD_{UCSaMH}}\right)100 \%$

PD_H-power density of the respective harvester array. PD_{UCSaMH}-power density of the uncoupled MH array.

2&G SaMH, C&G SaSH, and 2&G MH with SH CC in MSH give the maximum power lensity at the harvester position of 2341, and all other uncoupled/coupled combinations give the maximum power density at he harvester position of 8142.

28.05.2024

Experimental setup

Parameters and their values

Description	Value					
Length of the MP, l_j (mm)	70	80	90	100		
Mass of the magnet part, m_{m_i} (gm)	17.6	17.6	17.6	17.6		
Mass of the MP rod, m_{r_i} (gm)	16.6	18.6	20.6	22.6		
Mechanical damping of the MP, c_{me_i} (Ns/m)	0.0064	0.0059	0.0056	0.0052		
Length of the SP, L_j (mm)	110	120	130	140		
Mass of the solenoid bobbin, M_{s_j} (gm)	17.2	17.2	17.2	17.2		
Mass of the SP strips, M_{st_i} (gm)	24.6	26.6	28.6	30.6		
Mechanical damping of the SP, C_{me_i} (Ns/m)	0.0071	0.0069	0.0066	0.0064		

28.05.2024

Multiple electromagnetic hybrid harvester

Figs: Comparison of simulated and experimentally obtained powers for different types of harvesters with various coupling combinations.

28.05.2024	Power generation through vibration- based energy harvesters

Conclusions

- This study reports a novel design of a pendulum-based array of electromagnetic vibration energy harvester.
- The investigations include three types of harvesters with different mechanical coupling configurations.
- > The position of the harvesters was varied and analyzed.
- It is observed that, coupled and grounded magnetic-solenoid harvester gives the better performance.
- The experimental observations show good agreement with the theoretical results.

Extended Research

1.Investigation of an array of pendulumbased electromagnetic nonlinear vibration energy harvester

2.Analysis of dual pendulum-based friction induced electromagnetic vibration energy harvester array

Stick-slip behavior Stribeck model

28.05.2024

THANK YOU