Properties of the electromagnetic softening and hardening spring: experiment and simulation

Maksymilian Bednarek

14.05.2024

Electromagnetic spring

What is an electromagnetic spring?

Electromagnetic spring

How to mathematically describe the force?

Electromagnetic spring

Polarity of the flowing current

Nonlinearity in springs

Softening and hardening characteristic

Hardening springs are such kind of nonlinear springs in which the force increases more rapidly than the deformation. Softening springs are such a kind of a springs in which the resistive force gets smaller as the spring deflection becomes larger [1].

Nonlinearity in springs

Applications of softening and hardening characteristic

$$F_n(x) = kx + \frac{Ipq^3}{q^4 + x^4} \cdot x$$

Equilibrium position

<u>kq</u>

р

$$\begin{cases} \dot{x}_{1} = 0 \\ -\frac{k}{m_{1}}x_{1} - \frac{lpq^{3}}{m_{1}(q^{4} + x_{1}^{4})} \cdot x_{1} = 0 \\ x_{1} = 0 \qquad \forall \qquad x_{1} = \pm \sqrt[4]{\frac{-kq^{4} - lpq^{3}}{k}} \qquad I \leq -\frac{1}{k} \end{cases}$$

Experimental rig

1 - coil, 2 - inclinometer, 3 - position sensor, 4 - aerostatic supports, 5 - air preparation system, 6 - slider, 7 - brackets, 8compressed air, 9 - base, 10 - magnet, 11 - angle adjustment locks, 12 - worm gear, 13 - magnetic ruler, 14 - supports, 15 displacement display, 16 -angular scale, 17 - rig frame, 18 power supply, 19 - data acquisition card, 20 - H-bridge.

Frequency responce

Concluding remarks

- Electromagnetic spring force has been modeled and validated experimentally
- Spring of combined stiffness can produce softening, hardening, linear and bistable stiffness
- The spring can reproduce stiffness similar to Duffing stiffness $F_d = \alpha x + \beta x^3$

Thank you for your attention

- Spring of combined stiffness can produce softening, hardening, linear and bistable stiffness
- The spring can reproduce stiffness similar to Duffing stiffness

I[A]

I[A]

-0.05

-0.05

Experiment 1A

**** ** ** * ****

0.08

0.06

-0.1

0.05

0.05

0.1

Extention of the presentation

$$m_1 \ddot{x}_1 = -F_k(x_1) - F_e(x_1) - F_{c3}(\dot{x}_1) + F_h(t)$$

$$m_1 \ddot{x}_1 = -kx_1 - \frac{Ipq^3}{q^4 + x_1^4} \cdot x_1 - c_{c1} \dot{x}_1 + c_{c2} \dot{x}_1^3 + c_{c3} \operatorname{sgn}(\dot{x}_1) + 2m_u r\omega^2 \sin(\omega t)$$

