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Mathematical statement of the problem, based on the nonlocal theory
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where	𝐸%, 𝐸$		are	Young's	modules,	𝜈%, 𝜈$	are	Poisson's	ratios,	𝐺 is	shear	modulus.	
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where	𝜎,	𝜎) are	nonlocal	and	local		stress	tensors, 𝐾 𝑋) − 𝑋 , 𝜏 		is	the	nonlocal	modulus,		𝜏 = 𝑒#𝛼/𝑙,	𝛼 is	the	internal	characteristic	length,	
𝑒#			is	constant	corresponded	to	material	and	𝑙	is	external	characteristic	length	



where	𝑐* 	are	unknown	coefficients,	𝑤* = 𝑔(𝑥, 𝑦)𝜑* 	are	system	of	coordinate	functions,	whereas	𝑔(𝑥, 𝑦) is	shape	function		depending	on	the	boundary	

conditions	and	shape	of	the	plate,	𝜑* 	is	a	complete	system	of	functions,	in	particular,	the	set	of	power	polynomials.	Obviously,			construction	of	the	shape	

functions	is	quietly	difficult	problem	when	the	shape	of	the	plate		is	complicated,	for	example,	contains	cutouts.

Variational statement of the problem
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Finding unknown coefficients 𝑐* is performed based on the condition of the minimum of the functional: 'П
'0!

= 0, 𝑖 = 1, 𝑛.



R-functions method for investigation of plates with complex shape

The	problem	of	construction	of	the	basis	functions	for	the	Ritz	method	requires	

consideration	of	shape	information.

For	example	for	rectangular	plate 𝑔 𝑥, 𝑦 = 1
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For	this	purpose,	we	propose	to	use	the	R- functions	method	,	which	describes	the	

geometry	of	the	plate	analytically.	

In	order	to	construct	the	equation	of	the	domain	boundary,	it	is	needed	to	write	the	

characteristic	function	of	the	domain	consisting	of	the	characteristic	functions	Ω* of	its	

subdomains.	
Ω = Ω! ∧ Ω% ∧ (Ω+ ∨ Ω,)

d



We	apply	the	following	R-functions	system

According	to	the	theorem	proved	by	V.L.	Rvachev it	is	sufficient	to	perform	a	formal	replacement	of	the	Ω"
by	corresponded	continuous	functions	𝑓" and		Boolean	operators	∧,∨, − by	the	corresponding	R-functions	to	obtain	the	

equation	𝜔 𝑥, 𝑦 = 0 of	the	boundary	of	the	domain.
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The	logical	predicate	of	the	domain	is	constructed	as	follows:

According	to	the	algorithm	mentioned	above,	one	can	obtain	the	equation	of	the	

boundary	domain	as

Ω = (Ω%⋀# Ω$) ⋀# (Ω4⋁# Ω5)



System	of	basis	functions	𝑤* = 𝑔(𝑥, 𝑦)𝜑* ,			𝜑* 	is	a	complete	system	of	functions.

Structure	of	solutions:					

1, 𝑥, 𝑦, 𝑥$, 𝑥𝑦, 𝑦$,..We	use	power	polinomials:

1.	Simply	supported	boundary	conditions:

2.	Clamped	boundary	conditions:

𝑃 =�
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𝑐*𝜑* , 𝑤 =�
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𝑐*𝜔𝜑* .

𝑤% = 𝜔,𝑤$ = 𝜔𝑥,𝑤4 = 𝜔𝑦,𝑤5 = 𝜔𝑥$, 𝑤7 = 𝜔𝑥𝑦, 𝑤-= 𝜔𝑦$,..basis	functions:	

basis functions: 𝑤% = 𝜔$, 𝑤$ = 𝜔$𝑥, 𝑤4 = 𝜔$𝑦,𝑤5 = 𝜔$𝑥$, 𝑤7 = 𝜔$𝑥𝑦, 𝑤-= 𝜔$𝑦$,..

If	part	of	the	plate	boundary	is	clamped	(𝜔%)	and	the	remaining	part	is	simply	supported.

𝑤 = 𝜔𝑃,

𝑤 = 𝜔$ 𝑃.

3.	Mixed	boundary	conditions: 𝑤 = 𝜔%𝜔𝑃.

basis functions: 𝑤% = 𝜔%𝜔,𝑤$ = 𝜔%𝜔𝑥,𝑤4 = 𝜔%𝜔𝑦,𝑤5 = 𝜔%𝜔𝑥$, 𝑤7 = 𝜔%𝜔𝑥𝑦, 𝑤-= 𝜔%𝜔𝑦$,..



Some validation problems

Validation	of	the	proposed	method	has	been	performed	by	solving	several	testing	problems	and	comparison	obtained	results	with	existing		ones.	

The	first	case	study	describes	the	linear	vibrations	of	isotropic		square	nanoplate	with	simply	supported	boundary	conditions.		

The	dimensionless	frequency	parameter	 �𝜔	=𝜔 ℎ 8
9
		calculated	for	various	values	of	the	nonlocal	parameter	𝜇 is	presented	in	Table	1,

	2𝑎 = 10𝑛𝑚, 1
:
= 10.

Further,	we	consider	the	problem	studied	in	[19,29],	namely	the	clamped	orthotropic	graphene	sheet	with	the	following		mechanical	
parameters:

and		geometrical	parameters:	2𝑎 = 10.2𝑛𝑚, ℎ = 0.34𝑛𝑚, 3
1
= 1 has	been	investigated.

The	dimensionless	frequencies	 �𝜔	= $1 #;
:

8
<"
		are	provided	for	nonlocal	parameter	𝜇	(in	the	range	0..4	nm2),	see	Table	2.



To	validate	the	proposed	approach	for	plate	with	the	complicated	shape,	the	ABAQUS	was	

used	for	isotropic		plate	with	mechanical	properties.	

For	this	case	study	the	classical	theory	𝜇=0	was	considered.	The	plate	is	assumed	to	be	simply	

supported	or	clamped.	In	the	Table	3	the	results	of	our	calculation	by	method	based	on	R-function	

theory	are	presented	as	well.	



Numerical study

Further	numerical	calculations	are	performed	for	small-scale	plate	with	the	following	geometrical	parameters

and	the	plate	is	supposed	to	be	from	the	isotropic	material.	The	presented	results	contain	the	first	three	vibration	modes	calculated	for	𝜇 = 1	nm2	and	

size	of	cutouts	associated	with	following	ratio	0"
1
= 0.7,	0#

1
= 0.3,	the	corresponding	frequency	parameters	 �𝜔	= $1 #;!

:
8
<"
, 𝑖 = 1,2,3 are	shown	as	well.



Next	figure	demonstrates	the	results	of	studying	

the	effect	of	the	size	of	the	cutouts	on	the	

frequency	parameter	 �𝜔	= $1 #;
:

8
<"
depending	

on	the	change	in	the	nonlocal	parameter.	It	is	

assumed	that	 с"
1
+ с#

1
= 1.

The	influence	of	the	boundary	conditions	was	

investigated	for	two	cutout	sizes,	с"
1
=0.7,	с#

1
= 0.3

and.	с"
1
=0.5,	с#

1
= 0.5.	Here	we	considered	the	above-

mentioned	boundary	conditions,	where	the	plate	is	

simply	supported	or	clamped	along	the	entire	edge,	

as	well	as	mixed	conditions	with	clamped	part	of	the	

boundary	𝜔$ = 𝑓$ and	remaining	simply	supported	

part	of	the	edge.



Next,	we	consider	an	orthotropic	nanoplate	(mechanical	

properties	mentioned	above)	with	a	complex	shape	and	

geometrical	ratios	2𝑎 = 10𝑛𝑚, ℎ = 1𝑛𝑚, 3
1
= 1,	с"

1
+ с#

1
= 1.	

By	varying	the	values	of	the	nonlocal	parameter	𝜇 and	size	

of	the	cutouts,	the	frequency	parameter

	 �𝜔	= $1 #;
:

8
<"
		was	calculated.

Figure	6	shows	the	values	of	the	frequency	parameter	 �𝜔		

for	isotropic	and	orthotropic	plates	in	the	case	of	simply	

supported	and	clamped	nanoplates.	Geometrical	

parameters	here	are	taken	as	с"
1
=0.5,	с#

1
=0.5.



Concluding	remarks

The	 presented	work	 is	 devoted	 to	 	 the	 study	 of	 vibrations	 of	 orthotropic	 nano/microplates	 of	 complex	 shapes.	 The	
governing	equations	are	based	on	 the	Kirchoff-Love	hypothesis,	and	the	nonlocal	 theory	 is	used	 to	 take	 into	account	
small-scale	effects.	The	proposed	approach	uses	a	variational	statement	 in	combination	with	the	Ritz	method.	At	 the	
same	time,	 the	approach	to	construct	a	coordinate	system	based	on	the	R-functions	 theory	 is	 fundamentally	new	for	
this	class	of	problems,	and	it	allows	one	to	study	plates	of	various	geometric	shapes,	as	well	as	the	influence	of	different	
types	of	boundary	conditions.	A	numerical	simulation	was	performed	for	 isotropic	and	orthotropic	square	nanoplate	
with	 	 cutouts	on	opposite	 sides.	Moreover,	we	considered	 three	 types	of	boundary	conditions,	 including	mixed	ones.	
The	developed	approach	allowed	us	to	observe	that	an	increase	in	the	nonlocal	parameter	decreases	the	value	of	the	
frequency	parameter	for	a	complex	shape	plate	for	all	types	of	boundary	conditions	considered,	while	the	small-scale	
effect	is	more	pronounced	for	large	plate	cutouts	and	clamped	boundary.


