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where g, ¢’ are nonlocal and local stress tensors, K(|X' — X|, ) is the nonlocal modulus, T = eya/l, a is the internal characteristic length,

Mathematical statement of the problem, based on the nonlocal theory

o= /‘ K (fx' - XI.T) o' (X')dX',

eo is constant corresponded to material and [ is external characteristic length
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where E;, E, are Young's modules, v;, v, are Poisson's ratios, G is shear modulus.
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Boundary conditions: E\h? E,h*
Dy, y Dy
12(1 — 1) 12(1 — 1)

1. Simply supported w =0,M,, = 0; i

. Dy =vi Dy, Dygg = '—-
2. Clamped w =0, = 0. 12



Variational statement of the problem

ff (D11 (a Mz]) + Dy, (a;) + 2Dy, 5 V:ZZ > T 4Dsg (aa;_au;f) dxdy — w?iﬂg w? + <(?3_:)2 + (Z_\;}/)Z> dxdy

w= Z c;w;(z,y),

where c; are unknown coefficients, w; = g(x, y); are system of coordinate functions, whereas g(x,y) is shape function depending on the boundary
conditions and shape of the plate, ¢; is a complete system of functions, in particular, the set of power polynomials. Obviously, construction of the shape
functions is quietly difficult problem when the shape of the plate is complicated, for example, contains cutouts.
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Finding unknown coefficients c; is performed based on the condition of the minimum of the functional: 5o = 0,i =1,n.
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R-functions method for investigation of plates with complex shape

2 The problem of construction of the basis functions for the Ritz method requires
bi2!
consideration of shape information.
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For this purpose, we propose to use the R- functions method , which describes the
b2 1 geometry of the plate analytically.
In order to construct the equation of the domain boundary;, it is needed to write the
characteristic function of the domain consisting of the characteristic functions (; of its
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According to the theorem proved by V.L. Rvachev it is sufficient to perform a formal replacement of the (};
by corresponded continuous functions f; and Boolean operators A,V, — by the corresponding R-functions to obtain the

equation w(x,y) = 0 of the boundary of the domain.

We apply the following R-functions system

XVoy=x+y+ \/x2+ y2, (R - disjunction),
XAgy = X+ y—1/x2+ y2, (R - conjunction),

X = =x, (R — negation).
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The logical predicate of the domain is constructed as follows:
Q= (D370 Q2) Ao (Q3V Q)

According to the algorithm mentioned above, one can obtain the equation of the

boundary domain as

w = (firof2)No(f3Vofs)-

where 1 1
ey o 2—2>0'=—b2—2>0
fi=ge (@=2)20,f= o (¥ =47) 2
are the region between r = +a and the region between y = £b, whereas
1 1
fi=gr (G-2)20,fa=5-(1"-q) 20

are the region between z = +¢, and the region outside the lines y = +c¢,.




System of basis functions w; = g(x,y);, ¢@; is a complete system of functions.

We use power polinomials: 1,x,y,x%xy,y%,..

Structure of solutions:

1. Simply supported boundary conditions: w

n n
wP, P = z CiPi, w = z C;wQ;.
i=1 =1

) . _ _ _ _ 2 _ _ 2
basis functions: Wi = W, Wy = WX, W3 = WY, W, = WX", W = WXY, Wg= WY~,..

2. Clamped boundary conditions: w = w? P.
basis functions: w; = w3 w, = w?x,ws = 0y, w, = wix?,ws = w?xy, wg= w?y?,..
3. Mixed boundary conditions: w = w,wP.

If part of the plate boundary is clamped (w;) and the remaining part is simply supported.

basis functions: w; = w0, W, = WX, W3 = VWY, W, = VWX, Ws = W WXY, W= W{0Y?2,..



Some validation problems

Validation of the proposed method has been performed by solving several testing problems and comparison obtained results with existing ones.

The first case study describes the linear vibrations of isotropic square nanoplate with simply supported boundary conditions.

E=E =E,v=u1 =1G=E/(201+V)). E = 30M Pa, p = 1220kg/m®,v = 0.3
The dimensionless frequency parameter @ =w h \[é calculated for various values of the nonlocal parameter y is presented in Table 1,
2a = 10nm,% = 10.

Table 1: Dimensionless linear frequency @ of the isotropic simply supported square plate l'able 2: Dimensionless linear frequency @ of the orthotropic clamped square plate

1 0 1 2 3 4 5 L 0 1 2 3 4

[14]  0.0963 0.0880 0.0816 0.0763 0.0720 0.0683 29] pom  10.5941 9.5446  8.7526 8.1267 7.617

RFM 0.0963 0.0881 0.08158 0.0764 0.0720 0.0684 (29] rem 10.5533 9.5125  8.7242 8.1016 7.5949
(19) 10.5941 9.54546 8.7525 8.1267 7.617

RFM 10.5898 9.5422 8.7496 8.1241 7.61463

Further, we consider the problem studied in [19,29], namely the clamped orthotropic graphene sheet with the following mechanical
parameters:

E, = 1765G Pa, E; = 1588G Pa,G = 678.85G Pa, p = 2300kg/m?,v; = 0.3, v, = 0.27,

and geometrical parameters: 2a = 10.2nm, h = O.34nm,§ = 1 has been investigated.

) ) . — (2a)?*w |p ) )
The dimensionless frequencies w = - are provided for nonlocal parameter u (in the range 0..4 nm?), see Table 2.
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To validate the proposed approach for plate with the complicated shape, the ABAQUS was

used for isotropic plate with mechanical properties.

E = 30MPa, p = 1220kg/m*,v = 0.3

For this case study the classical theory =0 was considered. The plate is assumed to be simply

supported or clamped. In the Table 3 the results of our calculation by method based on R-function

theory are presented as well.

Table 3: Dimensionless linear frequency @ = &}2—", /'EL, of the isotropic plate with two outer cutouts
(k=0,r=0.3)

c1/a=0.7,¢/a=0.3
simply supported clamped
RFM 11.712 16.707
ABAQUS 11.562 16.730
c1/a=0.6,c3/a =04
simply supported clamped
RFM 14.041 21.480
ABAQUS 14.090 21.547
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Numerical study

Further numerical calculations are performed for small-scale plate with the following geometrical parameters a = 5nm, h/2a = 0.1,b/a = 1

and the plate is supposed to be from the isotropic material. The presented results contain the first three vibration modes calculated for ¢ = 1 nm? and

2.,
size of cutouts associated with following ratio =+ = 0.7, Z = 0.3, the corresponding frequency parameters @ —2a) @i ﬂ, i = 1,2,3 are shown as well.
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(a) @y = 11.042 (b) @2 = 15.391 (c) T3 = 22.123

Figure 2: Vibration modes associated with the first, second and third vibration frequencies.



Next figure demonstrates the results of studying

the effect of the size of the cutouts on the
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2
frequency parameter @ =(2az 2 ’Eﬁ depending
1

on the change in the nonlocal parameter. It is

C C
assumed that — + 2 = 1. (@) (b)
Figure 3: Dimensionless frequencies @ in terms of cutout size ratio ¢;/a and nonlocal parameter p for

isotropic nanoplate; (a) simply supported, (b) clamped.
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as well as mixed conditions with clamped part of the

.. . Figure 4: Dimensionless frequencies @ for three types of boundary conditions versus nonlocal parameter pu;
boundary w, = f, and remaining simply supported (8) e1/a = 0.T;cz/a = 0.3, (b) ¢1/a = 0.5,c,/a = 0.5.

part of the edge.



Next, we consider an orthotropic nanoplate (mechanical
properties mentioned above) with a complex shape and

: : b
geometrical ratios 2a = 10nm, h = 1nm,z =1, % + %2 =
By varying the values of the nonlocal parameter y and size

of the cutouts, the frequency parameter

(b)

— (a?w |p
W= — was calculated.
h Ey Figure 5: Dimensionless frequencies @ in terms of cutout size ratio ¢2/a and nonlocal parameter u for
orthotropic nanoplate; (a) simply supported, (b) clamped.

Figure 6 shows the values of the frequency parameter @

for isotropic and orthotropic plates in the case of simply b
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Figure 6: Dimensionless frequencies @ for different boundary conditions versus nonlocal parameter y; ¢1 /a =
0.5,¢c/a =0.5.



Concluding remarks

The presented work is devoted to the study of vibrations of orthotropic nano/microplates of complex shapes. The
governing equations are based on the Kirchoff-Love hypothesis, and the nonlocal theory is used to take into account
small-scale effects. The proposed approach uses a variational statement in combination with the Ritz method. At the
same time, the approach to construct a coordinate system based on the R-functions theory is fundamentally new for
this class of problems, and it allows one to study plates of various geometric shapes, as well as the influence of different
types of boundary conditions. A numerical simulation was performed for isotropic and orthotropic square nanoplate
with cutouts on opposite sides. Moreover, we considered three types of boundary conditions, including mixed ones.
The developed approach allowed us to observe that an increase in the nonlocal parameter decreases the value of the
frequency parameter for a complex shape plate for all types of boundary conditions considered, while the small-scale
effect is more pronounced for large plate cutouts and clamped boundary.



