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❖ Analytical solutions are powerful tools in various fields of science and engineering, allowing researchers to obtain 

explicit mathematical expressions that describe the behavior of complex systems. However, there are situations 

where traditional analytical methods may fail to capture the intricacies of a system accurately. This is particularly 

true when dealing with systems that exhibit complex nonlinear features, where phenomena occur at significantly 

different spatial or temporal scales.

❖ To overcome this challenge, multiple scale techniques are employed to develop analytical solutions that account 

for the interactions and dynamics occurring across different scales. These techniques aim to capture the essential 

features of the system by breaking it down into different levels of detail and deriving approximate solutions for 

each scale. By integrating these solutions, a comprehensive description of the system's behavior can be obtained.

❖ Multiple scale techniques often involve the application of perturbation theory, which assumes that the system can 

be expressed as a small perturbation from a simpler, well-understood base state. Perturbation methods, such as the 

method of matched asymptotic expansions, homogenization, or averaging, are then employed to derive solutions 

that incorporate the effects of both the dominant scales and the perturbations.



Introduction  

Approximate solutions finding techniques

1. Pertubation method

2. Variation of parameters 

3. Homotopy analysis method (HAM)

4. Numerical method

5. Approximation Techniques

▪ Adomian decomposition method 

▪ variational iteration method, and 

▪ multiple scale method
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Why is the analytical solution of 

these equations significant?

1. Insight and Understanding

2. Efficiency and Accuracy

3. Model Validation

4. Design and Optimization

5. Theoretical Advancements



The multiple scale technique Process  
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1. Start with the second-order nonlinear ODE in standard form: 
𝒅𝟐𝒚

𝒅𝒕𝟐
+ 𝜺𝒇 𝒕, 𝒚,

𝒅𝒚

𝒅𝒕
= 𝟎

2. Assume a solution of the form: 𝒚 𝒕 = 𝒚𝟎 𝒕 + 𝜺𝒚𝟏 𝒕 + 𝜺𝟐𝒚𝟐 𝒕 + ⋯

3. Substitute the assumed solution into the ODE and collect terms according to powers

 of 𝜺. Equate each term to zero to obtain a series of equations at different orders of 𝜺.

4. At the leading order 𝜺𝟎 ,  we will obtain a linear homogeneous ODE: 

𝒅𝟐𝒚𝟎
𝒅𝒕𝟐

+ 𝒇 𝒕, 𝒚𝟎,
𝒅𝒚𝟎
𝒅𝒕

= 𝟎

Solve this equation to find the leading-order solution 𝒚𝟎 𝒕 .

⋯(1)

⋯(2)

⋯(3)
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5. At the first order (𝜺𝟏), we will obtain a linear inhomogeneous ODE:

𝒅𝟐𝒚𝟏

𝒅𝒕𝟐
+ 𝒇𝒕 𝒕, 𝒚𝟎,

𝒅𝒚𝟎

𝒅𝒕
𝒚𝟏 + 𝒇𝒏 𝒕, 𝒚𝟎,

𝒅𝒚𝟎

𝒅𝒕
= 𝟎

       Solve this equation to find the first-order correction 𝒚𝟏 𝒕 .

6. Continue this process for higher orders of 𝜺 if necessary. 

7.  The final approximate solution will be the sum of the leading-order solution 

        and all the corrections: 𝒚 𝒕 = 𝒚𝟎 𝒕 + 𝜺𝒚𝟏 𝒕 + 𝜺𝟐𝒚𝟐 𝒕 + ⋯

        we can truncate the series at any desired order based on the accuracy required.

8. Solve for the coefficients in each correction term by using appropriate boundary 

     or initial conditions, depending on the problem’s nature.

⋯(4)

⋯(5)



The variable-length pendulum system/Swinging Atwood's Machine (SAM)

𝑙 ሷ𝜑 + 2 ሶ𝑙 ሶ𝜑 + 𝑔 sin𝜑 = 0 

𝑚𝑙 𝑡 ሶ𝜑2 𝑡 − 𝑀𝑔 +𝑚𝑔 cos𝜑 𝑡 = 𝑀 +𝑚 ሷ𝑙 𝑡 ,

𝜇𝑚 + 1 ሷ𝑙 𝑡 − 𝑙 𝑡 ሶ𝜑 𝑡 + 𝑔 𝜇𝑚 − cos𝜑 𝑡 ,    

 𝜇𝑚 =
𝑀

𝑚
,   𝜑 =

𝜋

2
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⋯(6)

⋯(7)

Fig.1 𝑇ℎ𝑒 𝑠𝑤𝑖𝑛𝑔𝑖𝑛𝑔 𝐴𝑡𝑤𝑜𝑜𝑑 𝑚𝑎𝑐ℎ𝑖𝑛𝑒



Final dimensionless form
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Multiple scale approach technique

⋯(8)

⋯(10)

The analysis focused on a localized region near the system’s static equilibrium. A small parameter 

represented as 0 < 𝜀 ≪ 1 is introduced to characterize the amplitudes of the oscillations within this 

region.

This parameter allows us to establish the following relationship:

⋯(9)
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⋯(11)

Multiple scale approach technique

This allows us to consider the following approximation:

The time-dependent variable 𝜒 𝜏  and 𝜙 𝜏  can be considered as a power series of 𝜀

⋯(12)

The time scales are represented by 𝜏𝑛 = 𝜀𝑛𝜏 𝑛 = 0, 1 , 𝜏0 – faster; 𝜏1 – slowest 
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⋯(13)

Multiple scale approach technique

⋯(14)

To convert derivatives with respect to 𝜏 to the new time scales 𝜏𝑛, the following operators are employed: 

The operators neglect terms of 𝑂 𝜀2  and higher. 

To obtain the PDE groups corresponding to different powers of 𝜀, we substitute equ. (10)-(13) into the 

dimensionless form of the governing equations. This procedure leads to the derivation of the preceding 

four linear PDEs. Based on the perturbation parameter 𝜺, the splitting method is employed for 

obtaining these PDEs. These equations are the orders of 𝜺 and 𝜺𝟐. 

(i) First-order equations (coefficient "1" at 𝜀1)
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⋯(15)

Multiple scale approach technique…

⋯(16)

(ii) Second-order equations (coefficient “2" at 𝜀2)

The resulting established solutions of Equ. (14) are presented as follows:

⋯(17)
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⋯(18)

Multiple scale approach technique

⋯(19)
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⋯(20)

Modulation Equations 

⋯(21)

The modulation equations are a group of four first-order ODEs that describe the modulation of amplitudes and phases, 

since the procedures for solving them are complemented by initial conditions. 

These secular terms in α2 and γ2 follow: 

⋯(22)

⋯ (23)



15

Godiya Yakubu

Approximate Analytical Solution of 

a 4-DOF Variable-Length Pendulum 

Model using the multiple scale 

approach

⋯(24)

Final asymptotic solution up to the second order approximations
Once we reconstituted the modulation equations for the nonresonant cases and took into account the established 

equations, we obtained the final asymptotic solution up to the second-order approximations

⋯(25)
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Comparison between analytical and numerical solution using time histories

Fig.2  Comparison between the analytical and numerical solution of the SAM



The modified SAM physical model and the governing equations
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⋯(26)

Fig.3 𝑇ℎ𝑒 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑠𝑤𝑖𝑛𝑔𝑖𝑛𝑔 𝐴𝑡𝑤𝑜𝑜𝑑 𝑚𝑎𝑐ℎ𝑖𝑛𝑒
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Assumptions

⋯(27)



Analytical Solution
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𝜎1 − 𝜎2 sin(𝜔 𝜏) − 𝑤2𝑥1(𝜏) − 𝜔0𝑥2(𝜏) − 𝜎3 sin(𝜔 𝜏)𝜙1(𝜏) + 𝜎4 sin(𝜔 𝜏)𝜙1
3(𝜏) + 𝜎5𝜙2

2(𝜏)

− 𝑐1𝑥ሶ2(𝜏) − 𝜎6𝜙1(𝜏) − 𝜎7𝜙ሶ1
2(𝜏) − 𝜎8𝑥1(𝜏)𝜙ሶ1(𝜏) − 𝜎9𝑥1(𝜏)𝜙ሶ1

2(𝜏) − 𝑥ሷ1(𝜏)

= 0 

 𝛿1 − 𝜎2 sin(𝜔 𝜏) + 𝛿2𝑥1(𝜏) − 𝑥2(𝜏) − 𝑏2𝑥2(𝜏) − 𝑏2𝑥2(𝜏) − 𝑏3𝑥2(𝜏) + 𝛿3 sin(𝜔 𝜏)𝜙1(𝜏)

− 𝛿4𝜙2
2(𝜏) − 𝛿5 sin(𝜔 𝜏)𝜙2

3(𝜏) − 𝑐1𝑥ሶ2(𝜏) − 𝛿7𝑥ሶ2(𝜏) − 𝛿8𝑥ሶ2(𝜏) + 𝛿9𝜙ሶ1(𝜏)

+ 𝛿6𝑥1(𝜏)𝜙ሶ1(𝜏) + 𝛿0𝜙ሶ1
2(𝜏) + 𝐺𝑥1(𝜏)𝜙ሶ1

2(𝜏) +
1

2
𝐴𝐺(𝜏)𝜙ሶ2

2(𝜏) + 𝐴𝐺1(𝜏)𝜙ሶ2
2(𝜏)

+ 𝐺1𝑥2(𝜏)𝜙ሶ2
2(𝜏) − 𝑥ሷ2(𝜏) = 0 

𝐹 sin(𝜔 𝜏) − 𝜔4
2𝜙1 + 𝜔5

2𝑥2(𝜏)𝜙1(𝜏) − 𝜁1 sin(𝜔 𝜏)𝜙1
2(𝜏) + 𝜁1𝜙1

3(𝜏) − 𝜔5
2𝑥2(𝜏)𝜙2(𝜏)

− 𝜁3𝑥ሶ1(𝜏) − 𝑐2𝜙1(𝜏)𝑥ሶ2(𝜏) + 𝑐2𝜙2(𝜏)𝑥ሶ2(𝜏) − 2𝜁4𝑥ሶ1(𝜏)𝜙ሶ1(𝜏) − 𝜁4𝑥1(𝜏)𝜙ሷ1(𝜏)

− 𝜙ሷ2(𝜏) = 0 

𝜉1𝜙1(𝜏) + ℎ𝜎2 sin(𝜔 𝜏)𝜙1(𝜏) + 𝜉2𝑥1(𝜏)𝜙1(𝜏) + 𝜉3𝑥1(𝜏)𝜙1(𝜏) − 𝜉4
2𝜙2(𝜏)

− ℎ𝜎2 sin(𝜔 𝜏)𝜙2(𝜏) − 𝜉2𝑥1(𝜏)𝜙2(𝜏) − 𝜉3𝑥2(𝜏)𝜙2(𝜏) − 𝜉5 sin(𝜔 𝜏)𝜙2
2(𝜏)

− 𝜉6𝜙2
3(𝜏) + 𝜉7𝜙1(𝜏)𝑥ሶ2(𝜏) − 𝜉7𝜙2(𝜏)𝑥ሶ2(𝜏) + 𝜉8𝜙1(𝜏)𝜙ሶ2

2(𝜏)

+ 𝜉9𝑥1(𝜏)𝜙1(𝜏)𝜙ሶ2
2(𝜏) − 𝜉8𝜙2(𝜏)𝜙ሶ1

2(𝜏) − 𝜉9𝑥1(𝜏)𝜙2(𝜏)𝜙ሶ1
2(𝜏)

+ 𝜉10𝜙1(𝜏)𝜙ሶ1
2(𝜏) + 𝜉11𝑥1(𝜏)𝜙1(𝜏)𝜙ሶ1

2(𝜏) − 𝜉10𝜙2(𝜏)𝜙ሶ1
2(𝜏)

− 𝜉11𝑥1(𝜏)𝜙2(𝜏)𝜙ሶ1
2(𝜏) + 𝜉12𝑥ሶ2(𝜏)𝜙ሶ2

2(𝜏) + 𝜉13𝑥ሶ2(𝜏)𝜙ሶ2
2(𝜏) − 𝜉14𝑥2(𝜏)𝜙ሷ2(𝜏)

− 𝜙ሷ2(𝜏) = 0 

The final dimensionless form of the motion equations
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⋯(28)
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Multiple scale approach technique

⋯(29)

The analysis focused on a localized region near the system’s static equilibrium. A small 

parameter represented as 0 < 𝜀 ≪ 1 is introduced to characterize the amplitudes of the 

oscillations within this region.

This parameter allows us to establish the following relationship:

This allows us to consider the following approximation:

continued on next page
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⋯(30)

Multiple scale approach technique…
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⋯(31)

Multiple scale approach technique…

The time-dependent variable 𝑥1 𝜏 , 𝑥2 𝜏 , 𝜙1 𝜏 , and 𝜙2 𝜏 can be considered as a power series of 𝜀

The time scales are represented by 𝜏𝑛 = 𝜀𝑛𝜏 𝑛 = 0, 1 , 𝜏0 – faster; 𝜏1 – slowest 
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Multiple scale approach technique…

The following operators are used to convert derivatives with respect to τ to the new 

time scales 𝜏𝑛.

(ii) First-order equations (coefficient “1” at 𝜀1)

⋯(32)

⋯(33)

⋯(34)

⋯(35)

⋯(36)
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⋯(37)

⋯ (38)

(ii) Second-order equations (coefficient “2” at 𝜀2)
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⋯(39)

⋯ (40)

(ii) Second-order equations (coefficient “2” at 𝜀2)…
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❖The solutions to the equations above (37) - (40), which can be solved in a specific 

order, emphasize the importance of the solutions from the first group. Therefore, we 

first focus on obtaining the general solutions of Eqs. (33) - (36). The established 

solutions are as follows:

⋯(41)

Multiple scale approach technique

❖Consequently, by substituting the solutions (41) into the second group of PDEs (37)–(40), 

we obtain the second-order solutions with 𝐵𝑖 and ෨𝐵𝑖being τ1 dependant where i = 1, 2, 3, 4:
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⋯(42)

Modulation equations 

⋯(43)

The modulation equations are a group of four first-order ODEs that describe the modulation 

of amplitudes and phases, since the procedures for solving them are complemented by initial 

conditions. These secular terms in 𝜶𝟐, 𝜷𝟐, 𝜸𝟐, and 𝜞𝟐 follow: 

⋯(44)

⋯(45)



Modulation Equations… 
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In order 𝜳𝒋 and 𝒂𝒋 represent the phases and amplitude of the solutions 𝜶, 𝜷, 𝜸, and 𝚪.

After eliminating the secular terms from 𝜶𝟐, 𝜷𝟐, 𝜸𝟐, and 𝜞𝟐, we obtained the following modulation 

equations

After reconstitution of the modulation equations for the nonresonant cases and taking into account the 

established equations (41), the final asymptotic solution up to the second order approximations with 𝜳𝒊 and 𝒂𝒊 

being 𝝉𝟏 dependent for i = 1, 2, 3, 4 is as 𝜶, 𝜷, 𝜸, and 𝚪.

⋯(46)



Comparison between analytical and numerical solution using time history
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⋯(47)



Comparison between analytical and numerical solution using time history…
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Fig.4a  Comparison between the analytical and numerical solution of the 4-DOF modified SAM for 𝑥1 𝜏  (i), and 𝑥2 𝜏  (ii) 
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(iii) (iv) 
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Fig.4b  Comparison between the analytical and numerical solution of the 4-DOF modified SAM for 𝜙1 𝜏  (iii), and 𝜙2 𝜏  (iv) 

Comparison between analytical and numerical solution using time history…



Conclusions

➢ The Modified SAM presents a novel SAM concept applicable in the modeling 

of engineering objects. 

➢ It is bases on a variable-length double pendulum with a suspension between the 

two pendulums. 

➢ The derivation and form of the analytical solution obtained using the multiple 

scale method is complex. Although successful, some important simplifications 

had to be applied.

➢ Future work will be extended to resonance case and stability analysis.
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Thank you for your kind attention
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