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Fk is electromagnetic control force produced by the k-th opposed pair of electromagnet coils.
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i0      denotes bias current in the actuators electric circuits,

0 is the magnetic permeability of vacuum, 

A is core cross-section area, 

N is number of windings of the electromagnet, 

 is the air gap in the central position of the rotor 

with    reference to the bearing sleeve, 

l is the total length of the magnetic path, 

*=Bs/(0Hs) denotes the magnetic permeability of the  

core material (the constant value);

Bs , Hs are the values of the magnetic induction and 

magnetizing force (they define the magnetic 

saturation level);

k   is the angle between axis x and the k-th magnetic    

actuator; 

(Pr ,P )   are the radial and tangential components 

of the dynamic oil-film action, 

Q0 is the vertical rotor load identified with its weight 

The cross-section diagram of the rotor symmetrically 

supported on the magneto-hydrodynamic bearing
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Equations of motion
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m* denotes rigid rotor mass,

(x*, y*) are Cartesian coordinates of the rotor center;

Qx
*(t), Qy*(t) are an external excitation characterizing bearing housing movements. We are considering

vibrations of the rotor excited by harmonic movements of the bearing foundation in the vertical direction;

s, s, Rc, Lc denote oil viscosity, relative bearing clearance, journal radius, total bearing length respectively;

(, ) are polar coordinates
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To represent the equations of motion  in dimensionless form the following changes of 

variables and parameters are introduced
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* is rotation speed; c* is bearing clearance
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Dimensionless equations of motion 
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Fx, Fy are the magnetic control forces,

(x0, y0) are coordinates of the rotor static equilibrium,

,  are control parameters
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The right hand side of the equations have been expanded in the Taylor’s series as well

as the origin have been shifted to the location of the static equilibrium for the

convenience of the investigation . The linear and quadratic terms have been kept.

So, the transformed equations of motion are cast into the following form
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Soft magnetic materials

The non-resonant case
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It follows that the derivatives with respect to t become expansions in terms of the

partial derivatives with respect to Tn according to
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where  is a small, dimensionless parameter related to the amplitudes and 
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We seek a first-order solution for small but finite amplitudes in the form
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The forcing term is introduced so that it appears at order , i.e. we take F= f , 

Equating coefficients standing by the same powers of  we obtain  

Order 
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The solution of equations (1) is expressed in the following form 
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The solvability conditions are  

where

Finally,  the equations for A1 and A2 are the following ones
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Therefore, the complex form solutions are as follows  

On the other hand, the real solutions are following 
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Comparison of the numerical integration of (1) and the perturbation solutions

in the case of non-resonant undamped vibrations
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Comparison of the numerical integration of (1) and the perturbation solutions 

in the case of non-resonant damped vibrations
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Comparison of the numerical integration of (1) and the perturbation solutions 

in the case of non-resonant forced damped vibrations
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Analyzing primary resonances the forcing term is ordered so that it appears at order 2

( F= 2f ,                  ).  nn  =ˆ
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Primary resonance

The cases of no internal resonance and an internal resonance

Consider the case  

Let us introduce the detuning parameter 1 in the following way

Equating coefficients of the same powers  of  we obtain 
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The solution of (5) is expressed in the form 
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The case of no internal resonance

(2 is away from 21 )

The solvability conditions are

where
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As t→, T1→

A1→0,

Therefore, the real solutions are
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The case when the internal resonance exists

The solvability conditions for this case become
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For the convenience let us introduce the polar notation  
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Separating the previous equations into real and imaginary parts,  we obtain 
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Finally, we obtain the expressions for a1 and  a2
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Frequency-response curves; 2=0, 2
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Comparison of the analytical results presented on the frequency response curves with 

the numerical integration of (1) 

(a) =19 (1= –1, 2= 0),  f=0.01 (b) =20 (1=0, 2= 0), f=0.01
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Amplitudes a1, a2 versus the amplitude of the external excitation f ;

2, 1= –0.5, 2= 0
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Comparison of the analytical results presented on the previous picture curves with the 

numerical integration of (1) 

(a) =19.5 (1= –0.5, 2= 0),  f=0.0065          (b) =19.5 (1= –0.5, 2= 0),  f=0.01
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Amplitudes a1, a2 versus the amplitude of the external excitation f; 

2, 1= 2= 0
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Comparison of the analytical results presented on the previous picture curves with the 

numerical integration of (1) 

(a)  =20  (1= 2= 0),  f=0.0006                         (b)  =20 (1= 2= 0),    f=0.003
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Rigid magnetic materials. Hysteretic close-loop control

The hysteretic properties of the system (1) can be taken into consideration

by means of Bouc-Wen hysteretic model

(8)

Here z1 and z2 are hysteretic forces. The case =0 corresponds to maximal hysteretic

dissipation and =1 corresponds to absence of hysteretic forces in the system,

the parameters ( kz, , n )R+ and R govern the shape of the hysteresis loop
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Conclusions I 

• 2-dof nonlinear dynamics of the rotor suspended in a magneto-hydrodynamic field has

been considered;

• In the case of soft magnetic materials the analytical solutions have been obtained using

the method of multiple scales:

- in the non-resonant case the system exhibits linear properties; the perturbation

solutions are in good agreement with the numerical solutions;

- the cases of the primary resonances with and without the internal resonance have been

investigated; frequency-response curves have been obtained; the saturation phenomenon

has been demonstrated; the comparison of the analytical and numerical solutions has been

carried out.

• In the case of rigid magnetic materials the hysteresis has been taken into account by

means of the Bouc-Wen hysteretic model. Conditions for optimal control of the motion are

based on the instability regions obtained in the 'frequency-amplitude' of external excitation

parametric plane as well as on the amplitude level contours of vertical and horizontal

vibrations of the rotor. When the hysteretic dissipation is increased, the amplitude level is

decreased and resonance peaks correspond to regions with lower frequencies of the external

excitation.
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Outline

II

• Hysteresis simulation and investigation of the control parameter planes 

• Hysteresis simulation by means of internal variables 

• Analytical models of

– hysteretic behaviour of magnetorheological/electrorheological fluids in a damper/absorber

– hysteresis in shape-memory alloys  (superelastic behaviour of an NiTi polycrystalline helix)

– stress-strain hysteresis with transient processes

• Evolution of chaotic behaviour regions in various control parameter planes of the Masing and Bouc-Wen 

hysteretic oscillators. Conditions for pinched hysteresis 

– restraining and generating effect of the hysteretic dissipation on chaos occurring

– substantial influence of a hysteretic dissipation value on form and location of the chaotic regions
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Mechanical system with elastic-plastic properties  

for hysteresis modelling (the Masing model) 

HYSTERESIS  SIMULATION  AND  INVESTIGATION 

OF  THE  CONTROL  PARAMETER  PLANES 

x, z  are input and output  

signals of the system  

 

y1, y2, …, yN. are internal variables  

i.e. 

xky ii
 =   for ( )( )0= iiiii yxFyFy sgn   

0=iy             in all other cases  
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where k0(x), Ai(x)0, Fi(x)>0, x[xmin, xmax], i, i;  

The output (or response) of hysteretic system is  z(t): 
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The parameters of functions                                 and                      (i=1, 2,…,N)  are determined via a 
procedure minimizing the  criterion function 

( )

( ) ( ) ( )( )( ) −
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which characterizes an error between the experimental curve and the calculated one. Here zi are
responses of a hysteretic system, which are known from an experiment and the values are obtained as
result of integration of the system, which is described by means of the analytical model.
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To solve the optimization problem

the method of gradient descent is used. The step-by-step descent to the minimum of the
criterion function realises in the opposite direction to the criterion function gradient



Experimental (red/    ) and simulated (blue/⎯⎯)  hysteresis loop  

for the magnetorheological damper filled with MRF-132LD  

(applied current 0.15 A, frequency 5 Hz)  

Final values of the parameters used in the analytical model  

for identification of the experimental data 

c1 c2 c3 

70000 80.7208 3.002 
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Hysteresis in shape-memory alloys:  

superelastic behaviour of an NiTi polycrystalline helix 

Experimental/simulated hysteresis loop is red (  )/blue (⎯⎯) 

Final values of the parameters used in the analytical model for  

identification of the experimental data 

c1 c2 c3 c4 c5 

82.8007 0.926997 3.33899 6.17671 4.88777 
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Stress-strain hysteresis with transient processes  

for the steel rope (stress (N) vs. strain (mm))  

Experimental/simulated hysteresis loop is red (  )/blue (⎯⎯)  

Final values of the parameters used in the analytical model  

for identification of the experimental data 

c1 c2 c3 c4 c5 

2.22254 0.0010226 0.338787 0.387749 1.45286 
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Scheme of Masing and Bouc-Wen hysteretic systems  

Masing oscillator  Bouc-Wen oscillator  

Total restoring force with elastic part and hysteretic one:  

R= x + (1– ) z R=( ) ( ) zxg  +−1  
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The influence of hysteretic dissipation on chaos occurring  

Masing hysteretic oscillator  Bouc-Wen hysteretic oscillator  

=0.16, =0.0005, =0.05, n=10.0,  

x(0)=0.1, ( )0x =0.1,  z(0)=0  

=0.2, =0, kz=0.5, =0.3, =0.005, n=1.0,  

x(0)=0.1, ( )0x =0.1, z(0)=0 
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Evolution of the chaotic regions (olive) and the regions of pinched hysteresis  

(dark yellow – r/<1%), (yellow – 1%<r/<5%) for the Masing hysteresis model in the (, F) plane  

with increasing of the hysteretic dissipation value =0 –> =0.5 –> =0.8.  

The parameters =0.0005, =0.05, n=10.0, x(0)=0.1, ( )0x =0.1,  z(0)=0 are fixed for all cases 

Evolution of the chaotic regions (blue) and the regions of pinched hysteresis  

(dark yellow – r/<1%), (yellow – 1%<r/<5%) for the Masing hysteresis model in the (, F) plane  

with increasing of the hysteretic dissipation value =0 –> =0.5 –> =0.8.  

The parameters =0.12, =0.05, n=10.0, x(0)=0.1, ( )0x =0.1,  z(0)=0 are fixed for all cases 
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Phase portraits and hysteresis loops of the Masing hysteretic oscillator  

in the case of chaotic response (=0.12, F=1.27, =0.057, =0.5);  

in the case of periodic response (=0.6, F=0.9, =0.0005, =0.5). 

 In all cases the parameters =0.05, n=10.0, x(0)=0.1, ( )0x =0.1,  z(0)=0 are fixed. 
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Evolution of the chaotic regions (pink) and the regions of pinched hysteresis  

(dark yellow – r/<1%), (yellow – 1%<r/<5%) for the Bouc-Wen oscillator in the (, F) plane  

with increasing of the hysteretic dissipation value =0.03 –> =0.01 –> =0.001  

at kz=0.5, =0.3, =0.005, n=1.0, x(0)=0.1, ( )0x =0.1, z(0)=0 and =0.  

Evolution of the chaotic regions (dark blue) and the regions of pinched hysteresis  

(dark yellow – r/<1%), (yellow – 1%<r/<5%) for the Bouc-Wen oscillator in the (, F) plane  

with increasing of the hysteretic dissipation value =0.03 –> =0.01 –> =0.001  

at kz=0.5, =0.3, =0.005, n=1.0, x(0)=0.1, ( )0x =0.1, z(0)=0 and =0.2.  
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Phase portraits and hysteresis loops of the Bouc-Wen hysteretic oscillator

In all cases the parameters kz=0.5, =0.3, =0.005, n=1.0, x(0)=0.1, ( )0x =0.1, z(0)=0 are fixed. 

chaotic response  

(=0.2, F=1.38, =0.0022, =0.01) 

periodic response  

(=0.3, F=1, =0.0, =0.001) 

periodic response with pinched loop 

(=0.2, F=1, =0.0, =0.03) 
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Conclusions II

• hysteretic loops of various form are simulated by means of internal variables;

• the behaviour of magnetorheological/electrorheological fluids in a damper/absorber is simulated as well as

hysteresis in shape-memory alloys (superelastic behaviour of an NiTi polycrystalline helix) and stress-strain

hysteresis with transient processes;

• the developed models are effective, enable to produce minor loops, present fast numerical convergence and

provide a high degree of correspondence with experimental data;

• highly non-linear Masing and Bouc-Wen hysteretic models with discontinuous right-hand sides are investigated

using effective approach based on analysis of the wandering trajectories. This algorithm of quantifying regular and

chaotic dynamics is more simple and faster from a computational point of view comparing with standard

procedures and allows sufficiently accurate to trace regular/unregular responses of the hysteretic systems;

• the evolution of chaotic behaviour regions of oscillators with hysteresis is presented in various control parameter

spaces: in the damping coefficient – amplitude and in the frequency – amplitude of external periodic excitation

planes;

• substantial influence of a hysteretic dissipation value on possibility of chaotic behaviour occurring in the

systems with hysteresis is shown;

• the restraining and generating effect of the hysteretic dissipation on chaotic behaviour occurring are ascertained;

• the regions of pinched hysteresis with various dissipation properties are presented
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Outline

III

• Quantifying smooth and non-smooth regular and chaotic dynamics based on analysis of the 

wandering trajectories 

• Analysis of the wandering trajectories 

• Comparison with other approaches 

• Chaos in the “smooth” test models

– Duffing equation

– Lorenz system

– three-well potential oscillator  

• Chaos in the “non-smooth” models

– stick-slip chaotic oscillations in a quasi-autonomous mechanical system with Coulomb and viscous 

friction 

– Regular and chaotic behavior exhibited by coupled oscillators with friction 

– Conditions for chaos occurring in self-excited 2-DOF  Masing/Bouc-Wen/hybrid  hysteretic systems 

with friction

• Conclusions

• References
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Quantifying smooth and non-smooth regular and chaotic 

dynamics based on the analysis of wandering trajectories 

(i=1,2 … n). 

,              ,                             : ( ( ) ( )( )  00
xx ~,  Tt  )   ( ) ( )( )  t~,t xx .  
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  ( )  iii

n
,...,, x~x:R~P

n
 −= xx

21
 

 

0   ( )x
n,...,,P  21

   :   ( ) ( )xx  SP
n,...,, 

21
.  

,                           (i=1,2 … n). 
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chaotic motion (including transient and alternating chaos):
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Domains of chaotic behavior for the Duffing equation:  

(a) in the (, f) plane (=0.15, x(0)=0.1, ( )0x =0.01);  

(b) in the (, f) plane (=1.7, x(0)=0.1, ( )0x =0.01).  

The smooth threshold corresponds to the homoclinic trajectory criterion. 
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The initial conditions phase plane for the Duffing equation 

for different values of the amplitude of excitation 

(=0.15, =0.8): (a) f=0.08; (b) f=0.09.
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The domains of chaotic vibrations for the Lorenz equations 

in the (, ) plane ( =10, x(0)=5, y(0)=5, z(0)=10).
The phase space of the initial conditions

( =10, =8/3, =16).
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Domains of chaotic behavior for the three-well potential system 

in the (, f)  plane (=0.1, x(0)=0.5, ( )0x =0.1). in the (, f) plane (=0.73, x(0)=0.5, ( )0x =0.1). 

The part of (, f) plane investigated by Li and Moon [1990] is in rectangle bounded by lines 

( =0.6, =1.2, f=0, f=0.16). Solid line in this rectangle corresponds to the homoclinic bifurcation 

curve and dash line corresponds to the heteroclinic bifurcation curve. Li and Moon calculated also 

100100  Lyapunov exponents in this part of (, f) plane.  
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The phase plane of the initial conditions for the three-well potential 

system for the different values of the amplitude of excitation  

(=0.1, =0.714):  

(a) f=0.04;                                                                                     (b) f=0.07. 
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The one-degree-of-freedom mechanical system with stick-slip oscillations. 
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Domains of stick-slip chaos in the (v*, ) plane 

(a = b = 1,  =  = T0=0.3,  =2, x(0) = 1, v(0) = 0.4). 

The smooth chaotic threshold is obtained using Melnikov's technique. 
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Phase portraits and Poincaré maps of chaotic trajectories 

of the oscillator at v*=0.14, =0.98 

Phase portraits and Poincaré maps of trajectories 

of the oscillator at v*=0.1626, =0.0845 

Phase portraits and Poincaré maps 

of periodic trajectories of the oscillator 

at  v*=0.7, =1.0 
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Regular and chaotic behavior exhibited by coupled oscillators with friction  

,          (i=1, 2)  

Analyzed 2-DOF model with friction.  Dry and viscous friction model.  
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Domains of chaotic (black) and stick-slip (gray) motion  

of the first (a), (b) and the second (c), (d) oscillator  

in sections of  space (v0, T01, T02): (a), (c) T02=5,   (b), (d) T01=15. 

b)

a) c)

d)
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Phase portraits and Poincaré maps of chaotic trajectories 

of the first and the second oscillator 

for v0=0.55, T01=23.5, T02=5. 

Phase portraits of regular trajectories  

v0=2.72, T01=15, T02=46.58.  
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Friction model 

Autonomous coupled hysteretic oscillators under sliding friction. 

Coupled Masing hysteretic oscillators under sliding friction 
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Evolution of the stick-slip chaos regions for the coupled Masing hysteretic oscillators  

in the parametric plane (v0, T01) on the increase of the hysteretic dissipation =0.2; =0.5; =0.8  

Parameters of the system T02=3, 1=0.001, 2=0.0005, =6, =2, 41 =v~ , 32 =v~ , =0.05, n=10.0 are fixed 

the first Masing oscillator  

the second Masing oscillator  
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Phase planes and hysteretic loops of both Masing hysteretic oscillators  

The parameters correspond to periodic motion of the oscillators  

in accordance with the regions obtained  

at v0=2.3, T01=17, T02=3, =0.5 

The parameters correspond to chaotic behavior of the oscillators  

in accordance with the regions obtained  

at v0=0.75, T01=8, T02=3, =0.5 
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Evolution of the stick-slip chaos regions for the coupled Masing hysteretic oscillators  

in the parametric plane (v0, T02) on the increase of the hysteretic dissipation =0.2; =0.5; =0.8  

the first Masing oscillator  

the second Masing oscillator  

parameters of the system T01=7, 1=0.001, 2=0.0005, =6, =2, 41 =v~ , 32 =v~ , =0.05, n=10.0 are fixed 
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Phase planes and hysteretic loops of both Masing hysteretic oscillators 

at v0=2.5, T01=7, T02=10, =0.5  

at  v0=0.5, T01=7, T02=10, =0.5 

at v0=3, T01=7, T02=15, =0.5 

The parameters correspond  

to chaotic behavior of the oscillators  

The parameters correspond  

to chaotic behavior of the oscillators  

The parameters correspond  

to periodic motion of the oscillators  

in accordance with the regions obtained  
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Friction model 

Autonomous coupled hysteretic oscillators under sliding friction. 

Coupled Bouc-Wen hysteretic oscillators under sliding friction 
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Parameters of the system T02=0.02, 1=0.002, 2=0.001, =1.5, 0401 .v~ = , 0302 .v~ = , kz=0.5, =0.3, =5, n=1.0 are fixed  

the first  

Bouc-Wen oscillator  

the second  

Bouc-Wen oscillator  

Evolution of the stick-slip chaos regions for the coupled Bouc-Wen hysteretic oscillators  

in the parametric plane (v0, T01) on the increase of the hysteretic dissipation =0.8; =0.5; =0.2  
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the first  

Bouc-Wen oscillator  

the second  

Bouc-Wen oscillator  

Evolution of the stick-slip chaos regions for the coupled Bouc-Wen hysteretic oscillators  

in the parametric plane (v0, T02) on the increase of the hysteretic dissipation =0.8; =0.5; =0.2  

Parameters of the system T01=0.025, 1=0.002, 2=0.001, =1.5, 0401 .v~ = , 0302 .v~ = , kz=0.5, =0.3, =5, n=1 are fixed 
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Phase planes and hysteretic loops of both Bouc-Wen hysteretic oscillators  

at v0=0.02, T01=0.02, T02=0.02, =0.2 

at v0=0.007, T01=0.045, T02=0.02, =0.2 

The parameters correspond to periodic motion of the oscillators  

in accordance with the regions obtained  

 

The parameters correspond to chaotic behavior of the oscillators  

in accordance with the regions obtained  
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Friction model 

Autonomous coupled hysteretic oscillators under sliding friction. 

Coupled hybrid hysteretic oscillators under sliding friction 

hysteretic devices h1 and h2 in the Masing's

and in the Bouc-Wen's forms are
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the first  

hybrid oscillator  

the second  

hybrid oscillator  

Evolution of the stick-slip chaos regions for the coupled hybrid hysteretic oscillators 

in the parametric plane (v0, T01) on the increase of the hysteretic dissipation 

=0.2, =0.8; =0.5, =0.5; =0.8, =0.2 

Parameters of the system T02=0.02, 1=0.002, 2=0.001, =1.5, 0401 .v~ = , 0302 .v~ = ,  

kz=0.5, =0.3, =5, n=1.0, M=0.05, nM=0.2 are fixed 
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the first  

hybrid oscillator  

the second  

hybrid oscillator  

Evolution of the stick-slip chaos regions for the coupled hybrid hysteretic oscillators 

in the parametric plane (v0, T02) on the increase of the hysteretic dissipation 

=0.2, =0.8; =0.5, =0.5; =0.8, =0.2 

Parameters of the system T01=0.01, 1=0.002, 2=0.001, =1.5, 0401 .v~ = , 0302 .v~ = ,  

kz=0.5, =0.3, =5, n=1.0, M=0.05, nM=0.2 are fixed 
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Phase planes and hysteretic loops of the hybrid hysteretic oscillators 

at v0=0.03, T01=0.06, T02=0.02, =0.5, =0.5 

at v0=0.004, T01=0.01, T02=0.02, =0.2, =0.8 

The parameters correspond to periodic motion of the oscillators  

in accordance with the regions obtained  

The parameters correspond to chaotic behavior of the oscillators  

in accordance with the regions obtained  
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Conclusions III

•A numerical approach for quantifying regular and chaotic dynamics based on the analysis of wandering trajectories is presented.

This approach, in contrast to the standard numerical methods (including computations of Lyapunov exponents), is effective,

convenient to use, requires much less computational time in comparison with other approaches, and can be applied to the

investigation of both “smooth” and “non-smooth” problems. Result’s comparison for the test models with other investigations

demonstrates a very good agreement with other groups.

• Chaos in the “smooth” test models

– Duffing equation. The domains of chaotic behavior agree well with the smooth threshold which corresponds to the homoclinic

trajectory criterion [Holmes 1979]. The domains also agree remarkably well with the results of the investigations based on the

calculation of the Lyapunov exponents, which was carried out using the Wolf's algorithm [Wolf at al. 1985, Moon 1987]

– Lorenz system. The results obtained conform well to the investigations and diagrams presented in [Moon, 1987]

– three-well potential oscillator. The domains of chaotic vibrations obtained are conforming to domains with positive

Lyapunov exponents presented by Li and Moon [1990]. Both in the case of two- and three-well potential systems the thresholds,

which are corresponding to the homoclinic and heteroclinic bifurcation curves, are undervalued.

• Chaos in the “non-smooth” models

– Conditions for stick-slip chaotic oscillations in a quasi-autonomous mechanical system with Coulomb and viscous friction

have been found. The results obtained show a good agreement between the analytical chaotic threshold constructed by means

Melnikov's technique and numerical simulation.

– Regular and chaotic behavior exhibited by coupled oscillators with friction were quantified.

– Conditions for chaos occurring in self-excited 2-DOF  Masing/Bouc-Wen/hybrid  hysteretic systems 

with friction were found.

84



References

• [1] J. Awrejcewicz, L. Dzyubak, Stick-slip chaotic oscillations in a quasi-autonomous mechanical
system, International Journal of Nonlinear Sciences and Numerical Simulation, 4(2), 2003, 155-160.

• [2] J. Awrejcewicz, L. Dzyubak, C. Grebogi, A direct numerical method for quantifying regular and
chaotic orbits, Chaos, Solitons and Fractals 19, 2004, 503-507.

• [3] J. Awrejcewicz, L. Dzyubak, Stick-slip chaos prediction in self-excited two-dof hysteretic
systems with friction, International Review of Mechanical Engineering. Vol. 1, n. 1, 2007, pp. 1-17.

• [4] F. Moon, Chaotic Vibrations, Wiley & Sons, New York, 1987.

• [5] Wolf, A., Jack, B., Swinney, H.L., Vastano, J.A., 1985. Determining Lyapunov exponents from a
time series. Physica D 16, 285–317.

85



Outline

IV

• Dynamics of two impacting beams with clearance nonlinearity

• Governing equations of motion of two Euler-Bernoulli impacting beams 

• Impact phase

• Out-of-contact phase

• Switching between phases

• Characterizing beams collisions

• Graphical representation of the analytical solutions obtained

• Conclusions

• References
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Dynamics of two impacting beams with clearance nonlinearity

Impacting beams under harmonic excitation



boundary conditions:         

Governing equations of motion of two Euler-Bernoulli impacting beams 

impact phase    out-of-contact phase 

(inhomogeneous boundary conditions):        (inhomogeneous boundary conditions):

𝑎1
2
𝜕4𝑦1 𝑥1, 𝑡

𝜕𝑥1
4 +

𝜕2𝑦1 𝑥1, 𝑡

𝜕𝑡2
= 0, 𝑎2

2
𝜕4𝑦2 𝑥2, 𝑡

𝜕𝑥2
4 +

𝜕2𝑦2 𝑥2, 𝑡

𝜕𝑡2
= 0;

𝑦1 0, 𝑡 = 0, 𝑦2 0, 𝑡 = 0,
𝜕𝑦1 0, 𝑡

𝜕𝑥1
= 0,

𝜕𝑦2 0, 𝑡

𝜕𝑥2
= 0,

𝑀1 𝑙1, 𝑡 = 𝐸1𝐼1
𝜕2𝑦1 𝑙1, 𝑡

𝜕𝑥1
2 = 0, 𝑀2 𝑙2, 𝑡 = 𝐸2𝐼2

𝜕2𝑦2 𝑙2, 𝑡

𝜕𝑥2
2 = 0,

𝑄1 𝑙1, 𝑡 = 𝐸1𝐼1
𝜕3𝑦1 𝑙1, 𝑡

𝜕𝑥1
3

𝐸2𝐼2
𝜕3𝑦2 𝑙2, 𝑡

𝜕𝑥2
3 + 𝐹 𝑡 ,

𝑦1 𝑙1, 𝑡 = 𝑦2 𝑙2, 𝑡 − ∆.

= 𝑄1 𝑙1, 𝑡 = 𝐸1𝐼1
𝜕3𝑦1 𝑙1, 𝑡

𝜕𝑥1
3 = 𝐹 𝑡 ,

𝑄2 𝑙2, 𝑡 = 𝐸2𝐼2
𝜕3𝑦2 𝑙2, 𝑡

𝜕𝑥2
3 = 0.
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𝑦1 𝑥1, 𝑡 = 𝑦1𝑠 𝑥1, 𝑡 + ෍

𝑚=1

∞

𝑌1𝑚 𝑥1 𝑞𝑚 𝑡 ,

Impact phase

𝑦2 𝑥2, 𝑡 = 𝑦2𝑠 𝑥2, 𝑡 + ෍

𝑚=1

∞

𝑌2𝑚 𝑥2 𝑞𝑚 𝑡 ,

𝑦1𝑠 𝑥1, 𝑡 =
1

6

3𝐸2𝐼2∆ − 𝑙2
3𝐹 𝑡

𝐸2𝐼2𝑙1
3 − 𝐸1𝐼1𝑙2

3 𝑥1
3 − 3𝑙1𝑥1

2 , 𝑦2𝑠 𝑥2, 𝑡 =
1

6

3𝐸1𝐼1∆ − 𝑙1
3𝐹 𝑡

𝐸2𝐼2𝑙1
3 − 𝐸1𝐼1𝑙2

3 𝑥2
3 − 3𝑙2𝑥2

2 ;

𝐸1𝐼1𝑘1𝑚
3 1 + 𝑐𝑜𝑠𝑘1𝑚𝑙1𝑐𝑜𝑠ℎ𝑘1𝑚𝑙1 𝑐𝑜𝑠ℎ𝑘2𝑚𝑙2𝑠𝑖𝑛𝑘2𝑚𝑙2 − 𝑐𝑜𝑠𝑘2𝑚𝑙2𝑠𝑖𝑛ℎ𝑘2𝑚𝑙2

𝐸1𝐼2𝑘2𝑚
3 1 + 𝑐𝑜𝑠𝑘2𝑚𝑙2𝑐𝑜𝑠ℎ𝑘2𝑚𝑙2 𝑐𝑜𝑠ℎ𝑘1𝑚𝑙1𝑠𝑖𝑛𝑘1𝑚𝑙1 − 𝑐𝑜𝑠𝑘1𝑚𝑙1𝑠𝑖𝑛ℎ𝑘1𝑚𝑙1 = 0;

+

solution that satisfy 

inhomogeneous BCs  mode shapes
time dependent 

coefficients

𝜔1𝑚 = 𝑎1𝑘1𝑚
2 ,𝜔1𝑚 = 𝜔2𝑚 , 𝜔2𝑚 = 𝑎2𝑘2𝑚

2 .
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Impact phase. Expressions for mode shapes and time dependent coefficients

𝑌1𝑚 = 𝐴𝑚 𝑠𝑖𝑛𝑘1𝑚𝑥1 − 𝑠𝑖𝑛ℎ𝑘1𝑚𝑥1 +
𝑠𝑖𝑛𝑘1𝑚𝑙1 + 𝑠𝑖𝑛ℎ𝑘1𝑚𝑙1
𝑐𝑜𝑠𝑘1𝑚𝑙1 + 𝑐𝑜𝑠ℎ𝑘1𝑚𝑙1

𝑐𝑜𝑠ℎ𝑘1𝑚𝑥1 − 𝑐𝑜𝑠𝑘1𝑚𝑥1 ,

𝑞𝑚 𝑡 = 𝑞𝑚 0 𝑐𝑜𝑠𝜔𝑚𝑡 +
1

𝜔𝑚
Ǘ𝑞𝑚 0 𝑠𝑖𝑛𝜔𝑚𝑡 +

1

𝜔𝑚
න
0

𝑡

ǃ𝜓𝑚 𝜏 𝑠𝑖𝑛 𝑡 − 𝜏 𝑑𝜏.

𝑌2𝑚 = 𝐴𝑚
𝐸1𝐼1𝑘1𝑚

3 1 + 𝑐𝑜𝑠𝑘1𝑚𝑙1𝑐𝑜𝑠ℎ𝑘1𝑚𝑙1

𝐸2𝐼2𝑘2𝑚
3 𝑐𝑜𝑠𝑘1𝑚𝑙1 + 𝑐𝑜𝑠ℎ𝑘1𝑚𝑙1 1 + 𝑐𝑜𝑠𝑘2𝑚𝑙2𝑐𝑜𝑠ℎ𝑘2𝑚𝑙2

×

𝑐𝑜𝑠𝑘2𝑚𝑙2 + 𝑐𝑜𝑠ℎ𝑘2𝑚𝑙2 𝑠𝑖𝑛𝑘2𝑚𝑥2 − 𝑠𝑖𝑛ℎ𝑘2𝑚𝑥2 + 𝑠𝑖𝑛𝑘2𝑚𝑙2 + 𝑠𝑖𝑛ℎ𝑘2𝑚𝑙2 𝑐𝑜𝑠ℎ𝑘2𝑚𝑥2 − 𝑐𝑜𝑠𝑘2𝑚𝑥2 ;
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𝑞𝑚 0 = න

0

𝑙1

𝜌1𝐴1𝑦01 𝑥1 𝑌1𝑚 𝑥1 𝑑𝑥1 −න

0

𝑙2

𝜌2𝐴2𝑦02 𝑥2 𝑌2𝑚 𝑥2 𝑑𝑥2 + 𝜓𝑚 0

ሶ𝑞𝑚 0 = න

0

𝑙1

𝜌1𝐴1 ሶ𝑦01 𝑥1 𝑌1𝑚 𝑥1 𝑑𝑥1 −න

0

𝑙2

𝜌2𝐴2 ሶ𝑦02 𝑥2 𝑌2𝑚 𝑥2 𝑑𝑥2 + ሶ𝜓𝑚 0



Natural frequencies of the vibrating beams in the in-contact phase 𝜔1𝑚 = 𝜔2𝑚

= 𝜔𝑚 and  in the out-of-contact phase 𝜔1𝑛, 𝜔2𝑛 (m=1,2,…,10) 

91



Normalized in-contact mode shapes (a) Y1m (x1) of the 1st vibrating cantilever 

beam; (b) Y2m(x2) of the 2nd vibrating cantilever beam (m=1,2,…,10)

92

(a) (b)



Out-of-contact phase. Expressions for mode shapes and time dependent coefficients

𝑐𝑜𝑠 𝑘𝑖𝑛𝑙𝑖 𝑐𝑜𝑠ℎ 𝑘𝑖𝑛𝑙𝑖 + 1 = 0; 𝑖 = 1,2

−𝐹 𝑡 Τ3𝑙1𝑥1
2 − 𝑥1

3 6𝐸1𝐼1,y
1s

(x
1
,t) =

𝑦1 𝑥1, 𝑡 = 𝑦1𝑠 𝑥1, 𝑡 +෍

𝑛=1

∞

𝑌1𝑛 𝑥1 𝑞𝑛 𝑡 , 𝑦2 𝑥2, 𝑡 = ෍

𝑚=1

∞

𝑌2𝑛 𝑥2 𝑞𝑛 𝑡 ,

y
2s

(x
2
,t)=0;

𝑌1𝑖 = 𝐴1𝑖 𝑠𝑖𝑛𝑘𝑖𝑛𝑥1 − 𝑠𝑖𝑛ℎ𝑘𝑖𝑛𝑥1 +
𝑠𝑖𝑛𝑘𝑖𝑛𝑙1 + 𝑠𝑖𝑛ℎ𝑘𝑖𝑛𝑙1
𝑐𝑜𝑠𝑘𝑖𝑛𝑙1 + 𝑐𝑜𝑠ℎ𝑘𝑖𝑛𝑙1

𝑐𝑜𝑠ℎ𝑘𝑖𝑛𝑥1 − 𝑐𝑜𝑠𝑘𝑖𝑛𝑥1 ; 𝑖 = 1,2

𝑞1𝑛 𝑡 = 𝑞1𝑛 0 𝑐𝑜𝑠𝜔1𝑛𝑡 +
1

𝜔1𝑛
Ǘ𝑞1𝑛 0 𝑠𝑖𝑛𝜔1𝑛𝑡 +

1

𝜔1𝑛
න
0

𝑡

ǃ𝜓1𝑛 𝜏 𝑠𝑖𝑛 𝑡 − 𝜏 𝑑𝜏,

𝑞2𝑛 𝑡 = 𝑞2𝑛 0 𝑐𝑜𝑠𝜔2𝑛𝑡 +
1

𝜔2𝑛
Ǘ𝑞2𝑛 0 𝑠𝑖𝑛𝜔2𝑛𝑡 .
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Out-of-contact phase. Initial conditions for time dependent coefficients expressions

94

𝑞1𝑛 0 = න

0

𝑙1

𝜌1𝐴1𝑦01 𝑥1 𝑌1𝑛 𝑥1 𝑑𝑥1 + 𝜓1𝑛 0

𝑞2𝑛 0 = න

0

𝑙2

𝜌2𝐴2𝑦02 𝑥2 𝑌2𝑛 𝑥2 𝑑𝑥2

ሶ𝑞2𝑛 0 = න

0

𝑙2

𝜌2𝐴2 ሶ𝑦02 𝑥2 𝑌2𝑛 𝑥2 𝑑𝑥2

ሶ𝑞1𝑛 0 = න

0

𝑙1

𝜌1𝐴1 ሶ𝑦01 𝑥1 𝑌1𝑛 𝑥1 𝑑𝑥1 + ሶ𝜓1𝑛 0



Normalized out-of-contact mode shapes Y1n (x1), Y2n (x2) of the 1st and of the 2nd

vibrating cantilever beams (m=1,2,…,10)
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out-of-contact phase                   impact phase  transition  

impact phase out-of-contact phase  transition  

Switching between phases

𝑦2 𝑙2, 𝑡 − 𝑦1 𝑙1, 𝑡 = 𝛥,
𝑑

𝑑𝑡
𝑦2 𝑙2, 𝑡 − 𝑦1 𝑙1, 𝑡 ≥ 0;

𝑃 𝑡 = 0,
𝑑𝑃 𝑡

𝑑𝑡
≤ 0, where 𝑃 𝑡 = 𝐸1𝐼1

𝜕3𝑦1 𝑙1, 𝑡

𝜕𝑥1
3 − 𝐹 𝑡 .
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Characterizing beams collisions

97

𝑡𝑖
+, 𝑡𝑖

− , (𝑖 = 1,2, … , 𝑁) time spans that correspond to the impact phases

during period of simulation 0, 𝑇

𝑡𝑖
+ (𝑡𝑖

−) ith impact start (end) time

𝐶𝑅𝑖 = −
𝑣2𝑖
− − 𝑣1𝑖

−

𝑣2𝑖
+ − 𝑣1𝑖

+ ,

𝑖 = 1,2, … , 𝑁

coefficient of restitution calculated for all impact

phases 𝑡𝑖
+, 𝑡𝑖

− , (𝑖 = 1,2, … , 𝑁) as the ratio of the

relative velocity after collision to the relative

velocity before collision

𝑣1𝑖
+ = ቚ

𝜕𝑦1 𝑥1,𝑡

𝜕𝑡 𝑥1=𝑙1,𝑡=𝑡𝑖
+

𝑣1𝑖
− = ቚ

𝜕𝑦1 𝑥1,𝑡

𝜕𝑡 𝑥1=𝑙1,𝑡=𝑡𝑖
−

velocity of the 1st beam tip at the ith impact start

(end) time

𝑣2𝑖
+ = ቚ

𝜕𝑦2 𝑥2,𝑡

𝜕𝑡 𝑥2=𝑙2,𝑡=𝑡𝑖
+

𝑣2𝑖
− = ቚ

𝜕𝑦2 𝑥2,𝑡

𝜕𝑡 𝑥2=𝑙2,𝑡=𝑡𝑖
−

velocity of the 2nd beam tip at the ith impact start

(end) time



Beam deflections surfaces depending on time and the lengths: 

(a) y1(x1,t) for the first beam; (b) y2(x2,t) for the second beam 

at A=0.0005, w=40, l1=0.1, l2=0.12, δ1= δ2=0.0, Δ=0.000011, Δt=0.0001, 0<t<0.07
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(a) (b)



Example 1:  Beams deflections  y1(l1,t),  y2(l2,t)-Δ
at A=0.001, w=50,  l1=0.1,  l2=0.12, δ1= δ2=0.0, Δ=0.000011, Δt=0.00001, 0<t<0.6
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Example 1:  (a) Coefficient of restitution CR of impacting beams;  

(b) Impact-induced force Q; (c) phase planes 
at A=0.001, w=50, l1=0.1, l2=0.12, δ1= δ2=0.0, Δ=0.000011, Δt=0.00001, 0<t<0.6
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(a) (b)

(c) (c)



Example 2:  No beam impacts during the first period of the external excitation.

Beams deflections  y1(l1,t),  y2(l2,t)-Δ 
at A=0.00013, w=50,  l1=0.1,  l2=0.12, δ1= δ2=0.0, Δ=0.000011, Δt=0.00001, 0<t<0.6
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Example 2:  (a) Coefficient of restitution CR of impacting beams;  

(b) Impact-induced force Q; (c) phase planes 
at A=0.00013, w=50, l1=0.1, l2=0.12, δ1= δ2=0.0, Δ=0.000011, Δt=0.00001, 0<t<0.6
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(a) (b)

(c)(c)



Example 3:  Clearance between beams is equal to zero

Beams deflections  y1(l1,t),  y2(l2,t)-Δ 
at A=0.002, w=60,  l1=0.1,  l2=0.12, δ1= δ2=0.0, Δ=0.0, Δt=0.00001, 0<t<0.6
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Example 3: (a) Coefficient of restitution CR of impacting beams;  

(b) Impact-induced force Q; (c) phase planes 
at A=0.002, w=60,  l1=0.1,  l2=0.12, δ1= δ2=0.0, Δ=0.0, Δt=0.00001, 0<t<0.6
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(a) (b)

(c)(c)



Chaotic motion (a) of the 1st and (b) of the 2nd impacting beam; Nearby trajectories 

y1(l1,t) and y2(l2,t) diverge exponentially; δ0 is the initial uplift at the free end 

at A=0.001, ω=50, l1=0.1, l2=0.12, δ1=0 and δ1=10-6, δ2=0.0, Δ=0.000011, Δt=0.00001, 0<t<0.8
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Time before impact start as function of (a) frequency and amplitude of external 

excitation (ω, F); (b) clearance and amplitude of external excitation (Δ, F); (c) 

frequency of external excitation and clearance (ω,Δ) 
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⚫ The analytical solutions, describing the transient dynamics of two impacting beams

with clearance nonlinearity, were obtained in the form of eigenfunctions series with

time dependent coefficients;

⚫ Several examples were considered for various set of parameters;

⚫ Transient dynamics surfaces, time histories of beams deflections, impact forces,

coefficients of restitution as well as phase planes were presented;

⚫ Chaotic behavior of the beams was ascertained on the base of sensitive dependence

of the trajectories of motion on the initial conditions;

⚫ Time before impact start level contours were obtained in various control parameter

planes (ω, F), (Δ, F) and (ω, Δ);

⚫ Solutions obtained allow to construct long term vibrations of the impacting beams.

Conclusions IV
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